
 

Analysis
Series
A sequence for converges to the limit L as n as

if Ifn LILE for sufficiently large n

Cauchy's principle ofconvergence is that Ifntm fake
for all ME 21 if n is sufficiently large
necessary and sufficient

The convergence of an infinite series depends on
its partial sum

if Elam converges the series is absolutely

convergent
if stunt diverges but Eun converges the
series is conditionally convergent

Necessary condition for convergence Un 70 as n a

Comparison test if Hnl converges and
lunle Kl Vin then lunt converges likewise
for divergence
Ratio test let F him MuttI

if r 4 sun converges absolutely
it r I Eun diverges
if f I inconclusive

Cauchy's root test similarto ratio testexcept r Line IUnl

Complexanalysism
The derivative of Azt at z zo is

f Zo zlimz.AZ zo

z Zo
this limit must be the same when approaching zo
from anydirection in the complex plane

consider Hz ucsc y ti v x y If f E exists
we should be able to approach it along either the
real or imaginary axes

F'G 2 ti E f CH i
y
t Iy y2

Fy Fgc e
y

fromdefinition
of derivative

these are the Cauchy Riemann equations
they are necessary and sufficient conditions for
f z to exist if partials are continuous

A function is analytic in a region R if ftz
is defined for it 2 ER If R is the entire
complex plane f is entire

sums products and compositions of analytic
functions are also analytic
a function is analytic at a point if FCA is
differentiable in asmall neighbourhood around Zo
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Many complex functions are analytic everywhere except
at certain points singularities e g feet PEVQCH
has singularities at QC to

If we know a function is analytic the CR equations
can tell us the imaginary part within a constant
if we knew the real part
The real and im parts both satisfy Laplace's equation

P2 u 02 O
The curves of constant u are orthogonal to the
curves of constant v i Da OV O

Power Series

If a function is analytic in R it is infinitely differentiate
everywhere in R Thus it can be expressed as an

infinite Taylorseries this is an alternate definition
for analyticity

f z of t z Zo

A zero of fGf is of order N if

f Zo f Zo f Zo fCN Zo

but fated to
i e the first nonzero term in the Taylor series
is proportional to Cz ZIN

A pole is like a vertical asymptote H gC z is

analytic and nonzero at Ezo then Hz has a
pole of order N where f z 9

Z Zo
N

if f Zo is a zero of order N then
4ftZo is a pole of order N
i e the number of times youmust multiply a
function by G Zo to make it analytic
if N so FCA has an essential singularity
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Behaviour for 2 A is examined by considering

g s f f then analysing 5 O

Laurent seriesv

Any function that is analytic andsingle valued through
an annulus Acl Z Zo lob centred on 2 zo
has a unique Laurent series

f Z an z zo
n Tenetreal

than Taylor
it the first nonzero term has n o this is

just a Taylorseries about Zo so f is analytic
at E Zo
if the first nonzero term is for some re NCO
Hz has a pole of order N at Zo
if there are an infinite number of terms Hz
has an essential singularity

e g e t otni.ftzln E.fm
n

so there
is an essential singularity at zero

c
99aenp.ewagten.IYFYImmmn.sn.anczaan

converges
for z z it must converge absolutely for all
Iz Zo l L I Z Zol

Hence there exists a radius of convergence R such
that the series t may be

zero on
converges for IZ Zo CR infinite
diverges for 1 Z 2ol R
may converge or diverge on the circle of convergence
IZ Zo f R

The ratio of terms in the power series is rn IAIT I Iz ao
by the ratio test if Ianti tant L as nas

the series converges for LIZ Zo 14 so the
radius of convergence is 4L

Alternatively the radius of convergence is equal to the
nearest singularpoint where not analytic
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Contour Integration

The integral along a contour C in the complex plane is definedas

fcfkldt j.IEo Azaz T.hedefnf.int of

The result may depend on the contour and direction matters
Contours can be added and subtracted

f z dz f fCHde t Hdz a a c

for a closed contour cfCzIdz it doesn't matterwhere we
start but direction matters
A simple closed curve is continuous has finite length and does

not intersect itself It partitions the complex plane intointeriorExterior
Cauchy's theorem states that if feel is analytic in a

simply connected domain R then for any simple closed curve
in R cfCz dz 0

the proof require's Green'stheorem 20 Stoked i e

cloudy wydx SPLIToff dady
expand f and da then apply the C R equations

cfCz dz ut i v doctidy
Green's thin f doc vdy t i fdudxtudy

GR f JsFactFy daly if 3 Ey doody
O

f
Cauchy's theorem implies that we can deform a contour
without changing thevalue of ftCAde providedthat we
do not cross a singularity c

to Is g from
a to

I
hence as long as f is analytic in the region analytic R

cfCHdz O SofC dz fczfCz dz
for an entire function contourintegration is path independent

Residues
Given the Laurent series of a function f z 9nCzZd

the residue of a pole is the coefficient a
if there is a simple pole at zo r

z fCH a i 7zo E ZAHA
for a pole of order N
rz.esofCH a i zlinfzoEcntTy.ddIn ikz zoJnfCzD
L Hospital's rule is often used to compute residues
if fCz has a simple zero at z Zo EEE 24 Go

Consider the contour integral around a pole
cfCzIdz Antz Zo nd 2 nlm

for nzo franc z Zdndz 0 analytic s re
for n LO we shrink thecontour to a circle
of radius E and use 2 Zo t Ee i

0

Joe anCz ndz 2 9 t n l
n t I
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reordering the sun andintegral cfCzldz Ziti rz.es Az
The residue theorem states that if Azt is analytic in a

simply connected R except for a finite number of poles at
2 Z Zn and C is a simpleclosed curve that
encircles the poles in a positive sense Canticlockwise

oECHdz r Az

this follows from the previous result for cfCHdZ with apole
rim rim

tI.re re

fCHdz fat dz qfc dz
Social'Ifelines

but afCHdz o by Cauchy'stheorem since R does not
contain anypoles
So AHdz Zai EL HZ O from which we

get the residuetheorem
If flat is analytic in R containing Zo IIe is analytic
except for a simple pole at 2 Zo with residue fCeo
Applying the residue theorem gives Cauchy's formula

f zo f zo de
if we know fCH on C we know f z in the interior too
this is equivalent to the uniqueness theorem

Be careful when applying the residue theorem to points at
infinity Using 3 DE 13
Computing integrals using residueswww

For trig functions sub e
0 and write trig functions

in terms of z e g d z e iz do cos0 2

we may then be able to identify poles
use the residue theorem onlyconsidering poles inside c

to compute the integral
For integrals with infinite bound we will need to expand

Crthe contour to infinity R
e g I fo y

doc 1
double Co

consider a semi circular contour poles x

by symmetry fgf azp 2ff Izp 2I as R as

for the curved portion the integrand is OCR 4 while

the contour has length HR so nfCHdz o as Rso
computing the residue 2I Ziti Ias I Easy

We can use different contours though circularsectors are
easier e.g for I Soo x4d R

crHHdz 0 as R A

fcttzydz ffytfiiff.pe a III
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Multi valued functionswww
Some functions e g ln z are multi valued for

C
certain contours

In z has a branch point at theorigin
we Hit every time we circle it

but for a curve G G is in a definite

range so In z is continuousandsinglevalued
We can introduce a branch cut to prevent curves from

6ranchcrossing a point point pun
infinitely many possible cuts conventional

to choose axis when possible
a branch of the function is then given by the domain
Of Q L 2 it around the branch point

Branch cuts prevent us from using Laurent series since
the function cannot be analytic in an annulus
f z Cz CY has a branch point at c and if is

rational a finite number of branches
e g f z VE I fzy Ftl has branchpoints E II
let z I r eiQ z I Rei02 c

f z friz eilat 0412
if C encircles E I Q O tht z YhMX
if Cz encircles 2 I 02 502 24

orit C encircles both or neither no change mx xm

als around

in these limits Ce 20 Cn 70

we are left with G G which
do not cancel because of the branch cut
for Ci 2 rei 0 while for G z re

2 i

we can then apply the residue theorem as before

tdf.ffkfmTLig.knfcz.ie de

2XE RI 730

f z analytic except for finite no of poles
Cr is a semicircle in the upper halfplane

Jordan's lemma states that if max HCHI 0 as Rsa

difffeat HeiHdz o

if XLO we use a semicircle in the lower halfplane

proof let E Re O and M menax lazy
1Sca fate Zdz I E M fo'tIe 41Re Idf
symmetry ofsine M fo'T Re TY doabout e Tk

2M R fo ke 79DOy Rsint
zmµ go'The TRsinodo
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sine is concave on 0 II 0 Esino El
c Sca fate Zdz I E 2MRf't12 e 2 TREAT do

Incl e TR M
0 as R as QEO

e g Evaluate I ffsi doc

well behaved at origin so can integrate

along real axis X
I Iif f e dz fee dz deformed

if I ID To evaluate these deform the contour

There is now a pole at the origin Add a large outer
semicircle so we have a closed contour 8

far KIDZ Ziti
by the Residuethin

Same de O
r

But using Jordan's Iemma the integral along
81 K 0 as R as

I Ii ziti to it
This integral can also besolved by noting

I In Cf de
Cauchy's theorem gives
finedztfqdz tferdztfdzfez.IO

Tiff Jordan's lemma
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