The Calculus of Variations

· A functional maps a function to a value, e.g $G[y] = \int_{\infty}^{\infty} f(y, y'; x) dx$ · The calculus of variations can be used to extremise functionals. The variation of G is defined to be: $g_{G} = G[y+Sy] - G[y] = \int_{\alpha}^{\beta} Sy \frac{SG}{Sy} dx$ of functional derivative. $= \int_{\alpha}^{\beta} \left[\frac{\partial f}{\partial y} \int_{\alpha}^{\beta} y + \frac{\partial f}{\partial y} \int_{\alpha}^{\beta} y' \right]_{\alpha}^{\beta} dx \quad \text{for a for a constant}$ integrate by parts $= \left[\frac{\partial f}{\partial y} \int_{\alpha}^{\beta} y + \int_{\alpha}^{\beta} \int_{\alpha}^{\beta} y \left[\frac{\partial f}{\partial y} - \frac{\partial f}{\partial x} \left[\frac{\partial f}{\partial y} \right] \right] dx$ fixed endpoints \therefore $\{y(\beta)=y(\alpha)=0\}$ · The functional is stationary when SG=0, resulting in the Euter-Lagrange equation $=) \begin{array}{c} \frac{\partial f}{\partial y} - \frac{d}{dx} \begin{pmatrix} \partial f \\ \overline{\partial y} \end{pmatrix} = 0 \end{array}$ in the special case where f has no x-dependence, Losub in EL to give de = of + de (y'of) \mapsto so when $\frac{2f}{5x} = 0$: f - y' IF = const Beltrami identity

Fermat's principle
Fermat's principle states that light chooses a path of stationary time, or equivalently, stationary optical path length:
P = \$\int_{A}^{B} \mu(\mathcal{L}) \mathcal{L} refractive index
For general 3P motion \$\begin{pmatrix}{l} y, z \right] = \$\int_{X_{A}}^{\int_{D}} \mu(y, z)\$, \$\begin{pmatrix}{l+y^{2}+z^{2}} \mathcal{L} \mathcal{L}

Hamilton's principle

Lagrangian mechanics examines the motion of a point in configuration space, described by generalized coordinates §9;3
The action S of a path is a functional of the Lagrangian L=T-V:
S = \$\int_{to}^{t_1} L(\xi 9.3, \xi 9.3, ...; t) dt\$

· Hamilton's principle states that the path in configuration extremises S ('least action')

$$\Rightarrow \underbrace{\partial L}_{\partial q_{i}} - \underbrace{\partial l}_{\partial t} \left(\underbrace{\partial L}_{\partial \dot{q}_{i}} \right) = 0 \quad i = 1, ..., N$$

$$\Rightarrow if L does not explicitly depend on time,
$$L - \underbrace{\tilde{Z}}_{i} \underbrace{\hat{q}_{i}}_{\partial \dot{q}_{i}} = const$$$$

Robert Andrew Martin

Constrained variation

- To maximise f(x, y, z) s.t. g(x, y, z) = 0, we extremise without constraint $f - \lambda g$, where λ is a Lagrange multiplier.
- · To extremise a functional G(y] s.t. P(y)=0, ne just extermise G(y)-2P(y) using the variational calculus.

• This gives rise to the Rayleigh-Ritz method for estimating eigenvalues 4 if p(x) > 0, $q(x) \le 0$ such that $F[y] \gg 0$, then $\Lambda \gg 0$ 5 one of the extrema, λ_0 , is then the absolute minimum) ([y] > No, with equality for eigenfunctions.
> hence we may find an upper bound by substituting a trial function, since No < N(ymin)
We may decide to use a LC of basis functions as the trial, or to have a function with another parameter in it.
> the trial basis functions should satisfy the 8.5.
> we can improve the bound by differentiating with respect to the parameter, e.g. ?// a for y=e^{-xx²}.