
 

Linear Algebra
Vector Spaces
A matrix can be thought of as a linear relationship between
twovectors
Scalars are elements of a number field e.g Rl or
A field is a set of elements on which addition and
multiplication are defined and are commutative associative
and distributive
closed under addlmutt
includes identity elements 0 for add 1 for multi
includes inverses forevery element except aero

Vectors are elements of a vectorspace defined over

some number field
vector addition and inner product are defined
closed under these ops
includes identity element for addition

Let f et ez ene be a subset of some
vector space V The span of S is the set of all
vectors that are linear combinations of S

the vectors of S are linearly independent if no
nontrivial linearcombination of the vectors is zero

i li Xi O x xn O

A basis is a set of linearly independent vectors that

spans the space
all bases of V have the same number of
elements the dimension of the space
any vector x EV can be written uniquely as eix

we can convert between bases with a transformation matrix
e di Rig di ki ee og Ei Rijog

Linear operatorsnvm

A linear operator A acts on a vector space to produce
other elements of V
A Ca Et Py a A E t B A y

A matrix is an array of numbers that can represent a
linear operator It contains the components of the operator
with respect to a certain basis
because A is linear knowledge of its action on a basis
is sufficient to know its action on any vector in thespace
As of Ei Ai og
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we can rewrite A in a different basis as follows
we require ei Ai Xj Ei Ai od
by using Eg Gi Ri and relabelling indices
Evi Rai Ai og e n Airyod

RA CR od A E
A RAN

lnnerproductsm
The inner product GE l y is a scalar function
of two vectors It must
be bilinear i.e linear in thesecond argument
and antilinear in the first
og lay x Ely and Casely a CE ly
have Hermitian symmetry

yl x Cos I y
be positive definite

LEI E o c equality iff og

distributive in the firstargument
Get 4 I El z t C F l Z

In Rn LE ly xiyi
In L El 4 xi y

the Cauchy Schwarz inequality states

I Loe It TE LEI E Lyla
or I Get g I e 1 1141

equality when E and y are linearly dependent
can be proven by considering Ge ay Iz ay
then later setting lat hey 171
we can use Cauchy Schwarz to define cos 0 in R

cos Q Lofty
111141

Hermitianmatries
The Hermitian conjugate of a matrix is the complex
conjugate of its transpose

At At At ij A
it obeys similar rules to the transpose

Att t A Ao t ftp.t
the Hermitian conjugate of a scalar is just the
conjugate e.g LE ly t Cody
a matrix is Hermitian if A At
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knowing Leite for basis vectors is sufficient to
know Ely because of bilinearity If Cei IE Gig

Lofty Lei xi IE yj Kitty Gi
Gig are the metric coefficients
G is Hermitian since Gi's GTi
a basis is orthonormal if Lei led Sig

The adjoint of a linearoperator Ar with respect to
some inner product is another linearoperator At such that

Atx ly LEI Ay
for a given basis the components of Ant are
the entries in the matrix At

Matrix Symmetry Equation
symmetric AT A
antisymmetric At A
orthogonal AAt ATA I Cainmaphokgues

Hermitian At A
anti Hermitian At A
unitary At A

c
these are all

normal AAt AtA normal

Eigenvalues and Eigenvectors

An eigenvector of a linear operator is a nonzero

rector of such that A E X E We can find
the eigenvalues and eigenvectors by solving the
characteristic equation det CA XI o

if the n roots are distinct there are n linearly
independent eigenvectors unique to a constant factor
if an eigenvalue is degenerate and occurs m times
there may be between 1 and m linearly independent
eigenvectors for that eigenvalue spanning the eigenspace

In general we can prove eigenvalueEigenvector
properties as follows using the example of Hermitianmatrices
Consider two eigenvalueHector pairs

Ax Xx A y my
Take Hermitian conjugate of i ytAt µyt
then use Hermitian property ytA µ yt
apply yt to toget two expressions for ytAx

7 M ytx o

suppose x and y are the same eigenvector and 2 m
X ft x Tx 0

six to a X p
so eigenvalues of Hermitian matrix are real
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if x and y are different eigenvectors
CT pi ytx O

ytx e o for X F M
hence eigenvectors orthogonal for different eigenvalues

The eigenvectors of normal matrices corresponding to
distinct eigenvalues are orthogonal
if A is Hermitian IA is anti Hermitian vice versa
if A is Hermitian expCIA is unitary
an eigenbasis can ALWAYS be constructed for a

normal matrix even if there are degenerate eigenvalues

Symmetry Eigenvalues Interpretation

Hermitian X T Real
anti Hermitian X 7 Imaginary yireofafie.baUnitary x 4x Unitmodulus

Diagonalisation of a matrix
wtfE RE for a transformation between basis vectors

a linear operator can be transformed via A's RAR
Two square matrices are similar if 8 5 AS where
S is some invertible similarity matrix

A matrix is diagonalisable if it is similar to a diagonal
matrix i e A S AS
To diagonalise we form 5 from

g Ey Ifthe eigenvectors of A The entries
of 1 are then the corresponding
eigenvalues

5 AS 5 A of s l Asi AI

s GE En't l C A

YointeeartyhatindepenananghsingtiesdaiaginimumitionTTi
only if A has n linearly independent eigenvectors

Thus normal matrices are diagonals'sable and the
eigenvectors can be chosen to be orthonormal
Intuitively diagonalisation is the process of expressing
a matrix in its eigenbasis the simplest form Hence

the similarity matrix is unitary and A U n ut
Diagonalisation is useful because some operations are
mucheasier to carry out on the diagonalised repr A Srs t

Am SMS
del A deth Foranymatrix detA III i
tr A tr A tr A E Xi
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Thetransformation between orthonormal bases is describedby
a unitary matrix

a real symmetric matrix can be diagonalised by
a real orthogonal transformation

Quadratic forms
wmThequadratic form associated with a real symmetric matrix

A is Q x atAoc Aigociog hencethe name

Q is a homogeneous quadratic function of oc i e

QCxD NQ Loc Any homogeneous quadratic is the
quadratic form of some symmetric matrix
Because real symmetric matrices can bediagonalised by
orthogonal transformations

QCod SEA x x'TA x oc Sx
the eigenvectors of A are the principal axes
in the eigenbasis the quadratic form is just a
sum of squares Q Xi Xi

Quadratic forms can represent quadratic surfaces
QCH K f constant

hence representing Q in its eigenbasis allows us
to easily identify the shape

Given X od t Iz y't 7322 K
As have same sign ellipsoid
Ts have mixed sign hyperboloid

7 22 7 sphere
7 72 surface of revolution about 2 axis

13 0 translation of conic section along 2 axis

Hermitian forms2

The Hermitian form is a complex extension of the quadratic
form Hbd xtAx real scalar quantity
Hermitian matrices can be diagonals'ed with unitary
transformations Had x'thx Ti lKil
The Rayleigh quotient associated with a Hermitian matrix
is the normalised Hermitian form yay xtAxxtx

if x is an eigenvector of A X is an eigenvalue
easily verified by substitution
the Rayleigh Ritz variational principle considers

87 Xcx tsx 764 and shows that the
eigenvectors of A are the stationary points of Xxl
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Cartesian Tensors

In Cartesian basis vectors are independent of position
To transform from basis vectors Ej to Ei i
k v E ViEi vi Ei y Ei E v

vi L Vj with Lij EI E
is the transformation matrix

rotates the frame
the

same argument applies when interchanging v and
v So LTL LLT I L is orthogonal

A Cartesian vector v is defined as a set of coefficients

vi with respect to an orthonormal basis Eni such that
an orthogonal transformation transforms to another orthonormal basis

Eli with coefficients vi

Orthogonal matrices have determinant II
det L it is a proper rotation
det L l is an improperrotation ie rotation creflection

if L and L are proper rotations theircomposition
is also a proper rotation Vi VijL'Yu Vk

A Cartesian pseudovector transforms via ai del L Liga
i e gains a sign change under q l f1 Vector
any reflection change of handedness
cross products are always pseudovectors T l k pseudo

1 Vector

Tensors
nm

A tensor of order rank n transforms between two
orthonormal basis sets as described by the transformation law

Ti in Liis Linn Tj jn
The order of a tensor is equal to the number of indices
neededto tablet it Scalars are order zero vectors are
order 1 matrices are order 2
Pseudotensors are defined with an additional Det L
factor changing the sign during reflection
The Kronecker delta is a second order tensor
fig Lipljqfpq lipljp fi.TL is orthogonal

The Levi Civita symbol is a thirdorder pseudotensor This
can be shown by verifying that one of the nonzero terms
stays constant under a transformation

E izz dett Liphq r Epqr GetLT
The inertia tensor relates theangular momentum I to the
angular velocity y DI dm Ex CeyxE dm hehe HE

Ji Ii w with Ii Juplkkxkxr.fi Xix DV

Susceptibility tensors 2ndorder relate the polarisation to
the applied E field Pi EX Ej
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Elastic deformation is described by thestrain tensor Ei
Ei IN t3

the associated stress tensor oi defines the j th componen
of force on a plane perpendicular to i
they are related by a fourth order stiffness tensor

Propertiesoftensoism
If A and B are order n tensors then so is any linear
combination of them Proof transform C L A t p B
C i in NA i in t B 8 i in

L Lij Lin'sn Aj j n t P Lij Linjn Bj j n
Lig Lin'sn xAj in POji jn

The tensor product of tensors of order n and m is

a tensor of order n m also called outerproduct
A 8 Ci in in in m Ai in B int in m

a general tensor can be written as T Ti in Ei Ox Ein
tensor pseudotensor pseudotensor

A tensor contraction sets two indicesequal and sums

over returning a tensor of order n 2
A tensor issymmetric in a pair of indices if
T i n j T j i and antisymmetric if
T i j T j i The Cantilsymmetry of a
tensor is invariant under a change of coordinates

If Sijk is symmetric in i j and Apgar is antisymmetric
in pg then the contraction SijkAi r 0

Second order tensorsrumrunner
2ndorder tensors can be represented as matrices and thus
have matrix properties
Anantisymmetric second order tensor is equivalent to a
certain pseudovector the dual vector

Ais Eijkak fg.IE af
Any symmetric second order tensor can be uniquely
written as the sum of a symmetric traceless tensor
and a scalar multiple of the identity tensor
S S I tr s I I tr s I

traceless
Symmetric secondorder tensors can be diagonals's ed

Isotropictensorim

Isotropic tensors are invariant with respect to the frame
and thus have no preferred direction
0th order all scalars are isotropic transformation land
1storder only the zero vector is isotropic
2ndorder A fig for scalar 7
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3rdorder X Eijk for scalar X
4th order Xf Sm t Mfikf tv fits a for scalar X M V

Isotropy may be used to evaluate integrals when
the integration region issymmetric r er du du

Xi freakpCrYdV freaRipe Pcr dV RijXj Xi

Xi RigX for general Rig means Xi is isotropic
the only isotropic vector is the zero vector so E Q

E g for a second order tensor integral
kij frieaxilx.jpCmdV RikRj Kii ki

Ki X fi with 2 I Tr k
Ki SrEa ErpCr dV 8ijJ

Tensor fieldsc
in someA tensorfield assigns a tensor to every position I domain

e g a conductivity field 2ndorder tensor field
Thedivergence of a vector field is scalar the contraction

of the tensor product of two vector fields Oi and Fj
Tx E is a pseudovector field the contraction of the
tensorproduct of pseudotensor Eijk and vectors 2C Fm
The derivative of a secondorder tensor field is a thirdorder
tensor field 2 i ogk
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