
 

Oscillations and Waves

Oscillations

Consider a driven harmonic oscillator subject to
damping moi tboitkx FC.tl
this can be written in the canonical form

Jc t 22 two 2x Em
wot Trym
y 612M

we define the quality factor as the number of
radians of oscillation required for energy not
amplitude to fall by a factor of e Q off
the solution to the driven SHM equation is a
linearsuperposition of the transient response
i.e complementary function and the steady state
particular integral

With no driving force we can easilysolve the homogeneous

equation p2 t 28ps two
2 0

p s For
the relative values of r and w determine the regime

lightdamping rewo Q 05 Tax
p r I i w d Wd Er
2CH Ae Heiwt A Aoe 0

act a e Hoos watt0 note twoconstants
here we treat SHM as the real part of a
complex phasor rotating 0 on an Argand diagram
energy decays twice as fast as amplitude

Heavy damping 8 Wo Q co 5

resulting motion is the sum of two exponentials
KCH Ae Pit f e Pat

at large times the exponential with smaller
decay rate will dominate

Critical damping F Wo Q 05
mostrapid approach to equilibrium with no overshoot

x CH CA to the rt
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Drivenharmonicoscillatorin
If the forcing function is sinusoidal i e of the
form feint we use a trial solution Aeiwt
where A aoe 0 We find that

A t
Wo2 a

2 2 ya
Eq

the response function is just Aeiwtfret
Wo wim increasing Q

aol.MIL

Wd Wo w

Response at different regimes
low freq motion controlled by spring stiffness

x flavor COSWE
high freq motion controlled by inertia

x flap I w t antiphase
at resonance the response is Q times larger than
the w o limit

The velocity response can be found by differentiation
ithas maximum value at w wo regardless of daniping

velocity is in phase with the driving force at resonance
Acceleration resonance occurs

aboveworThe power of an oscillator can be found by
multiplying the real parts of F and J
P Rec E Recit I F tf Eci to I

Lp L Re Foto
hence mean power depends on the phasedifference
between force and velocity Maximum power
when F and u are in phase
in a damped oscillator the mean powerdissipation
is given by P I 61Vol

r the width of a power resonance curve can be
characterised by its half power bandwidth

Whp I 8 tap Ow 22

this provides an alternative definition for the

quality factor 0W
go Iq

i e high Qoscillators
have narrow resonance
peaks
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Because the harmonic oscillator is a linear system
when multiple driving forces are applied we can
considereach individually then sum those solutions
If the two driving frequencies are the

µ
same we can use phaser analysis
A Ai tAo'tZA A cosCaz a Inwhen two sources are coherent in

the resulting power can quadruple
with different driving frequencies we see beating
with a fast oscillation at ECWHood enveloped by
a slower wave with angular frequency Ecw wa

Electricdresende r

By Kirchoff's voltage law
Viet Ur Vc VCH V Eg L

It EE t Icq KI
L c

This is clearly 54M with Wo IT F It
inductance as mass resistance to damping
11capacitance as spring constant
for RLC circuits thequality factor is Q RE
current is greatest when w Ycc velocity resonance

dissipatedpower is given by CPS Rectotoy

Waves re for
to travel

A wave is described by Ulex E fix Ict
by taking partial derivatives we can derive the
10 wave equation 224

Jez CZ 221
God

if c is constant the wave is non dispersive
because the equation is linear waves obeysuperposition

Eg a stringundertension experiences yn to
a restoring force towards the axis

l Sx

FiF It II III a TELLsoo s

By NII 231 pI03 hence TE
A harmonic wave has a displacement thatvaries
sinusoidally with time at any
Y Lx H Re Aei cut kid

K is the wavenumber K 2 4
The general wave equation is 22 12 a Y

In 30 a harmonic plane wave is described by

YCE.tl Re Aexplicat E ED
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the wavenumber becomes a wavevector
by taking Hat ie multiplying by iw and thegrad
ie multiplying by ik we can show that

2 af
1h42

A spherical wave does not vary with 0 0 We
can show by substitution that a valid solution is

Mcr H Hr Ict e.g Tcr f Aeicant
kn

the Yr dependence is consistent with the inverse
square law for power

A cylindrical wave can be generated from a line
source Ceg diffraction slits
we may guess a Yrr dependence to conserve power
Y C r t for et

or
this is not a solution but is a good approx
for r X far away from slit

Z
n

f i wave can be disturbed along
k

4
two axes because of superposition x u

the relative amplitudes andphases define the polarisation
In general Yy Aycoscat Kx

Yz AzoosCat KK 0 z

Linear polarisation arises when 0 0 Az

any linearly polarised wave can be resolved H
int two orthogonal components with the same phase

circularpolarisation occurs when Ay Az but 0 Cmt it

displacement vector traces a corkscrew
the general case is elliptical polarisation
two amplitudes and an angle are needed to specify
waves can be partially polarised in which case
another parameter specifies the anpolarised power

Polarised waves can be represented with 2 vectors Cy and
2 components MOMY along z
eg linearly polarised

Ao ft
eg circular Ani
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Reflectionandtransmissionnn
Wave impedance relates the transverse force to the
transverse velocity NOT wave velocity

impedance driving force
transverse velocity

for a string 2 pc Fm
For a wave with transverse velocity is
LP z Rectum Erect hit
if Z is real and the wave is harmonic

p I Zai Ao
this can alsobe derived by considering KE and PE

per unit length kE Ep 3 12 PE MEET

Consider a harmonic wave approaching a boundary
2 I y Zz

Aexplicut Kim I

Mrs E Cexplicut keep
BexplicatkucD I ND

T x

I

B Cs at o Y is continuous
FIX is continuous relatedto transverse

force
A tf C and Z CA B Zac

the reflection coefficient and transmission coefficient
r I Zi Zz

Fitz I It r
A Zit Zz

The power coefficients are found by squaring T

and R Ctechnically square modulus

To reduce reflections at interfaces we can use impedance matching
2 ZZ 23

i

e
ik a ikzx.ae

Mrs I Mrs c e ikaw 4

ik k I f e i Koe
7

re
T x

city
tosimplify algebra drop e

wt set incident amplitude
to 1 add a phaseshift end to the transmission

and define 8 e ikat

match boundary conditionsto find r a b e

Robert Andrew Martin



If we choose a quarter wavelength of material the
reflected waves from each boundary are out of phase
we also note that theeffective impedance of the
layer and substrate is given by Zee Zf Zz
so to match impedances we need Zz JEZ
in practice Z for a material can be found via E

Longitudrnalwaresm
Longitudinal waves displace the medium in the same

direction as they propagate no polarisation
Sound waves propagate by compressions and rarefactions
of a medium caused by pressure waves
We analyse an infinitesimal column of gas with area

05 and equilibrium pressure p

pos 4 pos
x atDoc

yq

wave

PHIOs cptyptoypjosfwdhYpelaemmenfac.ciandpressure Xp
attaboy detox tat Oa
the fractional change in the column volume caused
by the wave is of 05k290Sox 2x

similarly fret DPos 05 oscos
Because the pressure changes rapidly there is no time
forheatexchange adiabatic process p VEconst

dp 8 pEY op Zoe
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dp is thepressure change from the wave i e dp Up
i off op 235oz HI Zoe
ratio of 2nd list terms on RHS n 47 so

is negligible Hence Foret x k 2

By NII Fnet p Oooo s ai

2 tpp 22nd
molar mass

2 2

nondispersive ware with ftp.rmmf
It is easier to measure changes in pressure
Yp sp 2 a a eilat Up it pka

i e pressure leads displacement by H2
the acoustic impedance L is the impedance

per unit area

I veeoiitiiirea Y.asos Y.ua Vp Zf
The intensity of a wave is the mean powerperunit area

I Re Up.at Lailaol
ya ao EihtKY nfp AnoEilertKx

The decibel scale is a logarithmic relative scale
soundpressure level 20 logo Prm pree
pref 20ps Pa roughly thethreshold of human hearing
alternatively D8A 10logo III red tree to Wm

Longitudinal waves also occur in liquids andsolids
The derivation is similar except for the relationship
between pressure and volume In general
Ip Yp K 2 K is the elastic modulus

the wave speed is then a FE
for gases and liquids we use the bulk modulus
since pressure is isotropic dp 8 If
solids are more complex because of shearstresses
and Poisson's ratio However for thin bars we can

just use Young'smodulus o YEx Tip

standing waves

standing waves form from the superposition of forward 1backward
wares with some B C VGe t Xcx Tct
e g for a string of length L with YCO.tt UGH O

Y Acoscwt kod Acoslwtth.sc 2Asinutsinkx
8 Cs satisfied when k n th n Edt
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Damped waves

Assume a damping force a transverse speed

i 23 a 23 raft
r Mm B is
the damping const

if we try harmonic waves kmustbecomp.la

K kr iki 7kr2 kf aE 2 Kr ki TIE
For lightdamping raw so Kr E ki Ec

Y Coc t e
ki RelDeiCart Kroc

Yrdecaying travelling wave

damping length set by ki and
independent of wavelength

For heavy damping row i ra aka

c k Kr ki Eff prearutsmardeimegaga

wave decays over a short distance since decay length
varies as w

o 5

The impedance of the wave now has frequency dependence

2 TaFYff Tha Tw Kr i ki
light damping 2 Ca ZoC I EE
heavy damping 2 car Zoll IVE

for a boundary between two possiblydamped media
we can use the same reflection coefficient
for light damping real EI i.e little reflection
for heavy damping rcw I i e antiphase reflection

The dispersion relation is the relationship between
w and k For non dispersive systems w ok
For a lightlydamped wave the propagating wave
has phase at Kroc so the phase speed is

v Far cut 47 5
wave speed now depends on wavelength so this
wave is dispersive

Dispersion can occur without damping e g a stiffstring
that resists bending 23 aP x 25
the harmonic solution has w takraw
there is no loss of energy but low wavelength waves
are more affected by the stiffness faster wave

This is relevant for piano tuning Because we have v pCH
fo V 24 2L f V fyfo 2 In

practice we will thus tune the higher octane string
to match f instead of Zfo to prevent beats
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Groupvelocity
Consider two equal amplitude waves with slightly
different frequencies propagating together
Y cos W t K H cos wat Kuk we wz Kirk
Y ZoosCutt Ktx cosCai t K x

where at IC wit wi w Icw We

thus there is a high frequency wave with speed
Vol Wilk walk modulated by a lower
frequency envelope with group velocity

Vg FI with deaf

Alternatively we can consider the speed Vg
of the peak of a group At the peak Myall components add in phase hence
wt Koot 0 is constant for all components

i dawcut text01 0 E Vg DIK w

For a nondispersive wave wa day for all w so the

group maintains itsshape For dispersive waves crests may
move relative to the envelope
Vg is important because it is the rate of informationpropagation
The range of waverectors in a group is inversely related to
the spatial extent of the group Ok Ose Il

If the group contains warerectors in the band ko Ok
the man and min velocities in thegroup are

min Zuk I ko ok Max ZUK I ko to k
in a time t the wave spreads by
Doc Oxo Vmas Vmin t

Oxo t 2 k4k 0kt
Ox oxo t 2 IfeIn taco III

Water waves
Water waves are complex because they have both longitudinal
and transverse propagation in quadrature
For deep water we can model the dispersion relation as

w2 g k t 0k3g
gravity surface tension

Ripples are surface tensiondriven i
w FEI Vg x Zffa 3zV

anomalous dispersion because speed t as X T
Gravity waves have longer wavelengths and are inertia driven

at Jfk Vg far Vol
normal dispersion since speed T as X T
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If X exceeds the water depth h gravity waves are

mainly longitudinal and have a dispersion relationship

WE ghk I HIS
for very shallow water a ring so the
wares are approximately nondispersive
thuswhen approaching theshore since speed t

amplitude T to conserve water

Guidedwaies yet
Consider a wave travelling in tx

Tg of
kooky

Eggalong a 20 membrane i

Ka Ky y 0
We consider these waves as

having K Ksc I Kyl LKoos0 Ksinot
The total displacement is 4 Aeilat kid e ihr eikon

Y ZiAsinckyy explicat Kaal
i e travelling wave in tx with warevector Koe
modulated by a standing wave with kg ht

w2 c4kf EC kit M 4 next
hence the guided waves are dispersive

vs data EFFIE
Thus the dispersion relation and displacementpattern
waveguide model is specified by m

Koc4kt so the wavelength of the
unguided wave exceeds thatof the guided one
Hence the phase velocity is greater than
the wave speed but group velocity is smaller
As Koo 20 Vol G and Vg O Vol 70 does
not violate relativity since thegroupcarries the info
As Koo so the behaviour approaches an unguided ware
Below the cutoff angularfrequency Wc Mtf Koi
becomes negative so there is no propagation
If there is a spread of frequencies multiple modes
can be excited resulting in signal distortion
avoided by choosing 6 such that w is below the
cutoff freq for mode on 2

the guide is their singlemoded for w

In an optical fibre data is transmitted via pulses of light
choose X with minimal dispersion butalso minimal
absorption into the fibre
the silica core is very thin so only one mode exists
there isdispersion because it's a waveguide butalso
because the refractive indexdepends on X Materials
are chosen such that these effects cancel
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Fourier series
fCH ta t EE ancost24 t 6nsin 24ft

an If AHcos Htt at
bn f f fat sin 2M at

For a square wave HH sinwot tfsin3wottfsintw.tt
first few components can be used to approx response since
it drops off rapidly at higher freq

It is sometimes simpler to use a complex representation

fCt Cneinwot Cn ff.ttzfCtIe inaotdt

In the limit this leads to the Fourier transform

F AH glad zfyf.geHe int at

F glut Httfz.ffgcwleiwtdw.bydefinition if a linearsystem is drivenwith fat
the response in freq domain is Rcw F fat

thus the response time is ocCH F ImadFAHD

A single pulse at the origin Ci e a delta function has
a constant F T i e it is a mix of all frequencies
the convolution of fCod with a delta function
replicates f centered at the deltaspike
by imagining another function gloc to be an infinite
number of spikeswith different heights we see that
f g causes g to be smeared out by f

Hence if we know the convolution function for a noisy
image we can use deconvolution

If we know how the system responds to a delta
function impulse by linearity we can extend this to any
driving force bymodelling that force as many deltaspikes

essentially the same method as Green's functions

Useful rules for Fouriertransforms
reciprocity F IfCHI glad F'ffCwD gC t
scaling FLECHA Ialg aw

linearity
convolution theorem

FT of real function has Hermitian symmetry
ie IC a Ecg
if FCA is real symmetric so is the FT
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Diffraction

Huygens principle can be used to derive some phenomena
but it predicts a backwards propagating wavefront
to fix this we use Huygens Fresnel theory introducing

an inclination factor KLA which describes the dropoff
in intensity as a function of angle
Fresnel proposed Kcal 20
the relative amplitude of the secondary
wavelets is in

Consider a planar aperture 2 with an element docdy
located at Gc y o

dy

Consider monochromatic spherical waves from S i en

Y CE H Re ICE e
wt

the wave arriving at dE is then UCH ases

The aperture can change the amplitude and phase as

characterised by a complex aperture function h Cx y
then the secondary wavelets are described by

n r n

as A V Ca y h x y duty
relative amplitude ofsecondary waves

i dyp Ig ase Rbcg doody Khdeir
the obliquity is given by k IEoscos cosCop

or

Up ffg Ia hbc y KlosOp aseikY doody

the diffraction integral allows us to calculate Up
relatively near the aperture but it still breaks down
for r L X i e the Very near field case

FraunhoferDiffractionm
consider the diffraction pattern on
a plane with planar waves
incident normally at the aperture

r L2 sq X tCyo y re R 060 904 42
ZR

use binomial expansion negligible for large R

specifically we can ignore thesecond term if
kcxhy.LI at R max extent of

2h aperture
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with the approximation that KCA H and using
Us as the incident wave constant for plane ward
we have the Fraunhofer integral

Up a ffg Ys Hay expfik 0 09 doody

For TO diffraction with patterns extending it
in oascco the integral over x is

just a multiplicative constant Using a 7
small angle approx sine YoIR

Yp x fhly e ikysinody

Up Ksina a F had L
x

we write resin0 9
e g for 3 narrow slits
h y fly to I fly t8Cy O eto f f y

i Up X ei9 t l t e 90 ItZoslqo I

Ip q Io It 20kg015 µ
q

we can extend this to N narrow slits resulting in
Ip Io Sina Nq012

As N o the diffraction pattern tends to a delta comb
the separation of primary maxima is G 2

N 2 subsidiary maxima and N t zeroes

NIi e g for a wide aperture TA II p g x of Sini FL an o ar una 9

More complicated diffraction patterns can be analysed
with the convolution theorem

SPACE II I d i e fi
012 012

qp.gov
EN n n

Up a X X Hr
cosq

sinceq

I play Io cos4 a'Sina EI
this modulation may lead to missing orders where
a peak is expected due to a minimum in the envelope

If we introduce some phaseshift at the aperture
the diffraction pattern shifts
In practice tomake use of Fraunhofer diffraction we
can use lenses to ensure that plane waves are coming
in 1out of the aperture c waves leavingthe

aperture at anglet
Eli pointed

faint on thescreen
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Fraunhofer diffraction can also be used for 20 apertures
using sin OF HR and sing Er with q ksinQ
and p KSinG This gives the 20 Fourier Transform

Yp pg a ffg tix y e P TDd dy
this is easy to evaluate if hisc y is separable into
fixgly then it is the product of two TO Fts

A circular aperture is not separable in x y The
Fraunhofer integral evaluattestoin 1stordergessel function of the

Yp g x Yezd IHI first kind
942

the diffraction pattern has itsfirst zero at sin0 that
the region inside the first zero is the Airy disc containing
86 of the energy flux

Babinet's principle states that thediffracted intensities
of an aperture and its complement are the same except
for the undiffracted beam

M
Y a ga e

i8 991
doody

42 a Danspace e Ptt99 doody ftp.e ilpttmdxdy
i 42 a SCpod U

Spectrodlineemissionm

Spectral lines arise from transitions between quantum states
they have a finite width because there is asmall uncertainly
in their energy because a quantum state has some lifetime
The electric field decays as ECH Eo e coswot

1 ICHi Il w a
cww.pe H JLorentzian powerspectrum w w

particle collisions limitthe coherence of emitted waves
mean collision time depends on the numberdensity of
particles collision cross section E and Vrms

In return ow n Evans

Because the atom will be moving when it emits light there
is a Dopplershift w ne w I Uz Wo is the rest from

freq
hence a signal component with freq w came from an

an atom with speed Ux CCw woke
the lo Boltzmann distribution gives

pluxlxexpfzmf.fi Its xexpf MEIY.E.fi
hence the spectrum is Gaussian This may be dominant
at higher attitudes less atmospheric pressure broadening

Generally spectra will be the convolution of Lorentzian Gaussian
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spectra are normally measured using grating spectrometers

concave mirrors have
lesschromatic
aberration than lenses

a concave mirror reflects focused incidentlightonto a
diffraction grating at a specific angle
light is then diffracted according to p

qq.tn9on9nuorationu0sin0zsinQ m7 incidence
orderofmaximum

Resolution
For a diffractiongrating of finite width the intensitypeaks
will be finite width peaks sink NE
for illumination at two wavelengths normal incidence
there will be peaks at
OsinOn my OsinOx m It 87

the first minimum for the nth primary maximum

for the X pattern is at OsinOn ma t n't
The Rayleigh criterion states that thepeaks will be
resolved if the maximum of one patterncoincides with
the minimum of the other

Define R Ex as the chromatic resolving power of
the grating p Igy m N number ofslits

hence it is easier to distinguish higherorderpeaks

In geometrical optics lenses produce point images from
point objects But in physical optics the finite
circular extent of the lens produces an Airy disc

the angular radius of the disc is a
2

the actual radius is 12 f focal length

the Rayleigh criterion thus limits the angular
resolution of the telescope
if a telescope produces images of the order

I 2

it is diffraction limited

Fresneldiffractionm
If we are in the very near field regime Rr El
we can no longer ignore the higherorder phase terms like
we did for Fraunhofer diffraction This is Fresnel diffraction
As before re R 060 904 2212

ZR
assume we are on axis ko go O
can changecoordinates otherwise

arty is no longer negligible
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Yp10,9 a Sfg Nscg exp ik doody

this is only tractable forsimpleapertures

cossiga FIwFEEn
c Up a fu explithI dufYexp i du

we define the Fresnel Integrals

Cw Sowcos CTIIdu scaffousinEE da
i e Sowexp ith du CCultisCw

The locus of Catti Scw is the Cornuspiral
arc length between points
w and wa is wz wi i e
w is thedistance from the
origin measured along thecurve
radius of curvature is Yaw
curve is odd and gradually
spirals to ICO5,051 as was

For a single 10 slit
Xp a Smmexp IME du ccwdtiscwdJ fecwdtikw.IT
this is equivalent to a vectorbetween points w wz

the undiffracted beam is the
vector betweenspiral centres
having length of
intensity a squareof length undiffracted

To find the pattern at otherpoints the origin must
be moved so that it is exactly between S and the
observation point to satisfy the Fresnel conditions
For diffraction around an edge
A 22 0 x Sca O

b 22 0 04 46 6

c 22 6 X Cc LO
d 23 0 x Xd

Wa

We
wb

Wd

well outside theshadow x 207 intensity undiffracted

amplitude falls as tu insidetheshadow
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For a narrow finite slit the integral width is always
ow differ but the starting w changes
as theorigin moves
the spanning vector is thus between twopoints
separatedby a constant arc length ow

For a wide finite slit Dw is large so the ends of
the spanning vector are in the tightly spiralled region
hence rapidly oscillating fringes

Fresnel diffraction for a circular aperturemurmursthe full expression for thediffracted amplitude noctpetatf
is found by examining thegeometry

rftp.ypaffghlsciylklotexpliketkldscdy
a t f pr ra s

making use of circular symmetry y

consider the aperture tobe composed of annular elements
5 p2 x2ty2 doody 21Tpdp Ids

Yp x ft
ra KLAexp Its yds

5o fats FE
This integral can be analysed with phasors y
the phase to TSAR increases linearly with n

s and elemental contributions are of the
order ds approximatelycirculairm

KCA decreases with s since for aperture elements

further away from the centre thepoint p will be
at a greater angle away from andiffracted
thedenominator increaseswith s thus the modulus of
the integrand decreaseswith s radiusofthphasor

circleisdecreasingm
the diffracted amplitude is the length of a vector from
0 to some point a distance s alongthe curve

The diffracted amplitude varies considerably depending on s

from YEO Y 24 u separated by phase 0 IT
the nth Fresnel halfperiod Ione ok
is the annular region between

phaser
for

n 1 IT E 061 In IT phasor

n 1 TR E P E nAR tor ne foV r Renote that odd numbered zones of
add to amplitude while evenzones subtract
the area of each zone is the same Hpn2pail HAR

Neglecting KLA and re re variation lie assuming circular
phasordiag each one contributes equally to theamplitude

for an aperture of radius ra there will be a certain
number N of zones where ra NIR
if N is even all zone pairs cancel so Xp O

if N is odd one zone will remain so Xp v2 Yu
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for large apertures as the phaserspirals in the zone

contributions decrease and the zones are narrower
check this

Consider a circularobstruction of radius ra on the
axis The inner zones up to f ra are obscured while
outer zones are unobstructed

we thus integrate from f ra p o

i e from a III Of as

the diffracted amplitude is the
length of the vector from A to
thecentre of thespiral
if ra is nottoo large hence da not too large
IAFI a loft hence the diffracted intensity is similar
to if there were no obstruction
this is Poisson'sspot a phenomenon that Fraunhofer
diffraction land Babinet's principle does notexplain

Off axis we can make the approximation that the aperture
shifts sideways across the zone structure

there is an oscillation in Mpf as P moves off axis
as the ratio of oddleven zone area changes
the diffraction pattern thus consists of circularfringes
with spacing x the zone width at the edge of the aperture
a long way off axis there will be many narrow zones
so theircontributions cancel intensity decreases rapidly

A Fresnel zone plate blocks alternate halfperiod zones

resulting in a high intensity u
this can be seen by adding
halfspirals
the obstructions should be
placed at alternating segments between

P FTR PETER PsTHR
the net amplitude is Xp I 2NYu where
is the number of open zones in theplate
thus the plate acts as a lens with an effective
focal length of f R Eh

since f a ta this is a highly chromatic lens
As point P moves along the axis towards the plate R
decreases When R 42M each open area admits
an even number of Fresnel zones so Yp O
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hence there are zeroes
at R them
likewise there are maxim

at R f zmH where

each zoneplate admits an
oddnumber of Fresnel zones

so Xp 2NYu
in reality the obliquity factor wouldreduce the
intensity of the maxima

Although this lens is poor it may bethe onlyoption at
high frequencies since refractive indices I

Interference

The superposition of two monochromatic waves is
Y Re Y e

iw't t yz e iast

using RecA I CA tA we can expand
It Recap to get

I s Il U Tt 11442 Re y ya eicwa
w.tt

Ref e
Ziw't t yje 2iwattzqqeicwitudtjthe.seymorecthmtheresponse

time of most detectors hence avg to zero
the time average intensity is thus
I x at tf Lazy La.azReLeid

oh CuiWdB

interference phenomena require the third term to be nonzero
If the detector averages over a time t we will notsee
interference if wi w a I D l i e we need w new

In practice 0 and 02 of independent sources vary randomly
and rapidly interference is typically only seen when light

from a single source is split and recombined giving a stable 0 02
n wavefront division the interfering waves are derived from
different spatial points on a coherentwavefront eg slitdiffractio
In amplitude division interferingwares are derived by dividing the
wavefront'samplitude at a point e.g reflectiontransmission at an interface
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The Michelson Interferometer
murmur

The Michelson interferometer uses amplitude division

reference path

the path difference between splitted beams is varied by
moving one mirror
the systemmustbe kept rigid to control the path difference
there will either be constructive or destructive interference
if we record intensity as a function of mirrorposition
we see a fringepattern

An alternative setup which also
works for extended sources tilts
the mirrors Hence fringes are
seen at the detector even with
both mirrors fixed

For a monochromatic point source with k 2472 weak

I Icai t I ca is t fa.az Releing

Koc 0 02 is the phase difference x is the path
difference ie 2x the diff in beamsplittermirror distances

I x Io It Receik'T averaginglicit
hence the fringe spacing tells us the wavelength

If the light is not monochromatic each wavelength will form
its own set of fringes Total intensity is the sum of fringepatterns

Fourier transform spectroscopymmmm
Broadband light e.g white light leads to blurred colourful
fringe patterns
let the measured intensity of light in a wavenumber range
K Ktdk be 2SCH Dk The total intensity
at a point is the sum of all waves

Icsc 2 ff SCk It Refeiwig dk
if we also define SCK for negative k

I x I t kjeikxdkI f.ESCHIK
is thetotal intensity

thus the spectrum x the Fourier transform of intensity

SCH x F ICA ID
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This result is used in the ft IRspectrometer which
characterises molecules by their vibration frequencies
FT spectroscopy is capable of a higherspectral resolution
than a diffraction grating but takes longer since many
intensity measurements mustbe made as a mirror moves

If a light source has two closely spaced wavelengths Kot 0K
its intensity pattern will be a product of cosines

SCH Ifk
SCH if TT Tf T T

Tko ko OK OK Ko Ko
local

IGI I I cos Koxcos okay
ma m

mean

the fringe contrast1visibility quantifies the visibility of the
high freq signal as the ratio of the bed min max
disturbance to the mean intensity

visibility Imax Im in
Imax Im in

DK can be found from the zeroes of the fringe contrast

FTspectroscopy has a finite resolving powerbecause only a
a finite range of is sampled

I x Icsd xWbc top hat function width d
S CN a SCH sine EI

hence the truespectrum is blurred by a sine function
with wiath Ok Hd

toga
ego

the resolving power is

as with a diffraction grating resolving power improves
as moredistant points on the wavefront are sampled

Thinfilminterternace
Amplitude division interference can occur naturally when light
is incident on a thin film
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applying Snell's law Sinai minor
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the phase difference is Kx IT since A is high low
impedance while B is low high impedance
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Using the standard interference expression assumingequal amplitude
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minus from a phasediff
maximum reflection intensity occurs when Rele'D 0
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For an extended source light will be coming in at many different
angles Thus different reflected angles will correspond
to either constructive or destructive interference These are

fringes of equal inclination If incidentbeams are nearnormal
circular fringes will be observed Haidinger fringes
A more common case is when the films have nonuniform
thickness leg soap films We then observe fringes of
equal thickness ie for near normal incidence brightregions
will beseen whenever 2nd Mtf 7 m EZ
anotherexample is if a sphericalsurface µforms an airgap with some othersurface
The resulting fringes are Newton's rings

The Fabry Pelot etalonwww
The Fabry Pelot etalon consists of two halfsilvered mirrors
sandwiching air Because the reflection coeff is high we

mustconsiderinterference from multiple beams

Assume that both mirrors have
reflection coeff r and transmission

coefficients t t
each successive beam acquires
an amplitude factor R P and
a phase shift of 2 dkcost
thetotal intensity is the squared
scum of the geometricprogression
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the resultis a fringe pattern
with sharp peaks at f 2mi
where there is an integernumber

of half wavelengths between
mirrors
we can either use the
etalon with normal incidence
and vary d or use an extended source and observe
circular fringes
At f 2mi the max intensity is Ira To findthe
width of the peaks it helps to rewrite the intensity as
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the width at half intensity is then given by

fthsin494 1 f ye tf smapdplr.fmHe

the finesse F is the ratio of the separation of peaks
to their full width at halfmaximum 28
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Hence for high reflection coefficients the etalon has
much better resolution than the Michelson interferometer

assume that two components can be resolved if they are
separated by 28112
S 2Kdcos0 4tdco D8 4ttd.gov da

at max intensity
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An issue in spectroscopy is that neighbouring orders
for different wavelengths will overlap the wavelength diff
at which overlapping occurs is the freespectral range
at normal incidence peaks are at 2d mX
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etalon are ideal for measuring finestructures of narrow spectra

Robert Andrew Martin




