Quantum Physics

. The photoelectric effect reveals the quantum nature of light: is the wowe theory predicts that the energy of electrons depends on light intensity Sout T intensity actually resulted in more electrons with the same energy. Energy only depended on freq. Ly the EM field is quantized into photons with E= tw ·A black body can be modelled as a cavity which supports a number of modes per unit volume. The energy density is given by the Rayleigh-Jean Law: $p(\lambda, T) d\lambda = \frac{8\pi}{\lambda^4} k_B T d\lambda$ b p(2,T) → ∞ as 2 → 0. This erroneous prediction is the ultraviolet catastrophe 5 planck solved this by quantising the energy modes · Classically, accelerating charges radiate energy, so electrons should spiral into the nucleus. 5 Bohr proposed that the orbit's circumterence must be an integer number of de Broglie wavelengths; 277rn=n7 Shence the angular momentum is quantized: L= nt Sorbits have specific energies & n2, explaining spectra. · Electrons fired at a nickel crystal were shown to diffract Gangles agree with the de Broglie hypothesis, i.e. R=t.k

Wave functions

A matter wave is described by Y(r,t) = Aexp[in(p:C-Et)]
b) the probability density of a powercle existing somewhere when observed is P(x,t) = 14(x,t)²
b) the wave function evolves deterministically until observation 15 the wave vector and freq must be known, i-e linear momentum and energy must be known (position unknam).
b) Y is intrinsically complex.
c) For a nonrelativistic particle, E = 1²/2m =) w = t/2m k²
b) i.e quantum waves are dispersive
c) w and k cannot be chosen independently.

Localisation

If we have any knowledge of position, then a plane wave is inadequate because it cannot be normalised. We need to localise the wavefunction by insisting 14(1,1)1 >0 as 111 >100. If the region of localisation may change with time.
We can construct a localised wavefunction with a weighted linear combination of plane waves with different waveectors Y(x,t) = ∫_{ZTT} ∫_{-\infty}^{\infty} g(k)e^{i(kx-wt)} dk

Lif we consider t=0 we can ignore w (a function of k)

Lyhence $\Psi(x)$ and g(k) form a Fourier pair: complex $g(k) = \int_{2\pi}^{1} \int_{-\infty}^{\infty} \Psi(x) e^{-ikx} dx$ g(k) is the momentum wavefunction and fully describes the state $|g(k)|^2$ is the pdf for momentum. Hence knowledge of parition is related to knowledge of momentum. h this can be quantified by imparing a bansian momentum wavefunction, representing uncertain knowledge of p: $g(k) = (\frac{a^2}{\pi})^{1/4} e^{-a^2(k+k)^2/2}$

4) hence $\Psi(x, 0)$ can be found with the inverse FT. $\Psi(x) = (-1)^{1/4} e^{ik_0 x} e^{-\frac{x^2}{2a^2}}$ plane wave modulo Add by 6aucsion $\int_{0.006}^{0.006} \int_{0.004}^{0.006} \int_{0.004}^{0.006} \int_{0.005}^{0.006} \int_{-0.05}^{0.006} \int_{-0.05}^{0.0$

L≥ a.s g(k) widens (smaller a), Y(x) narrows.
L> since g(k) cannot go to infinity, x cannot be measured precisely.
This implies the uncertainty principle. For a Gaussian unepacket it can be shown that D>c = 9/Jz, Dp = ±/2 > D×Dp = ±/2

Robert Andrew Martin

↓ For general nonefunctions, DxDp > €
↓ The Gaussian wave packet has minimum uncertainty
↓ in 3D, each dimension has its own uncertainty relation,
↓ orthogonal quantities can be measured precisely.

Time evolution of wave packets For a wowefunction that is highly localised in K space, we can use a First-order approx to the dispersion relation to indevision of propagation $4 \text{ bf } K = K_0 + 5 \text{ k}$ $\Rightarrow \Psi(x,t) = \sqrt{2}\pi \int_{-\infty}^{\infty} g(h) e^{i(kx-wt)} dk$ $= e^{i(k_0x-w_0t)} \int_{-\infty}^{\infty} g(h) e^{i(fkx-wt)} dk$ $\Rightarrow \omega(k) \approx \omega(k_0) + \frac{dw}{dk} |_{K_0} \delta k \Rightarrow Sw = \sqrt{g} \delta k$ $\therefore \Psi(x,t) = e^{i(K_0(x-vpt))} f(x-vpt)$

 In reality, the curvature of the dispersion relation over the wavepacket's spectral range may cause the name to spread out.
 For a Gaussian wavepacket with constant spectral function: g(k) = (a²)^{1/4} e^{-a(k-ko)/2}

→ use a quodratic approx to the dispersion relation: w(k) ~ w. + tike Sk + ti (Sk)² $= |\mathcal{Y}(x_{\mathcal{A}})|^{2} = \left(\frac{a^{2}}{4\pi}\right)^{1/2} \left(\frac{1}{a^{4}_{\mathcal{A}} + \frac{b^{2}+2}{4m^{2}}}\right)^{1/2} e^{x^{2}} \left\{\frac{-(x-bkot(m)^{2})}{(a^{2}+b^{2}t^{2}/m^{2}a^{2})}\right)^{1/2}$ $\xrightarrow{\text{normalised for all time}} e^{-\frac{(x-t)^{1/2}}{2a^{2}}}$ $\xrightarrow{\text{b} the centre of the packet (at x = btkot(m)) travels at V_{\mathcal{G}}}$ $\xrightarrow{\text{b} the spread of the packet increases with time.}$ $\xrightarrow{\text{b} we can alternatively obvive the spreading using the uncertainty principle:}{x(t) = x_{\delta} + vt \cdots} (\Delta x)^{2} = (\Delta x_{0})^{2} + (\Delta v t)^{2}$ $= \left(\Delta x_{0}\right)^{2} = (\Delta x_{0})^{2} + (bt/2m\Delta x_{0})^{2}$

Momentum representation Rather than using g(k), we can write everything more elogantly in terms of momentum directly $V(x,t) = \frac{1}{J_{2H}} \int_{-\infty}^{\infty} g(k) e^{i(kx-wA)} dk$ $= \frac{1}{J_{2H}} \int_{-\infty}^{\infty} g(k_t) e^{ikx} dk$ $\therefore V(x,t) = \frac{1}{J_{2H}} \int_{-\infty}^{\infty} \varphi(q,t) e^{ipx/t} dk$ and $\varphi(x,t) = \frac{1}{J_{2H}} \int_{-\infty}^{\infty} \varphi(x,t) e^{-ipx/t} dx$

Thus the momentum repr. is the FT of the position repr.
This hides the complications avising from the dispersion relation
Each representation carries complete information about the state.

Schrödinger's Equation

- For a general wavefunction $\Psi = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(k) e^{i(kx wt)} dk$, taking partial derivatives results in a wave equation. • Schrödinger's equation: it $\frac{2\Psi}{2m} = -\frac{k^2}{2m} \nabla^2 \Psi + V(x,t) \Psi$
- This can be interpreted in the context of operators, which correspond to measurements being taken. 4 $\hat{E} = i\hbar \frac{2}{24}$ is the total energy 5 $\hat{\rho} = -i\hbar \nabla$ is the momentum operator 5 $\hat{\mu}^2 = -\frac{\hbar^2}{2m} \nabla^2$ is the KE operator
- The Hamiltonian operator is equal to the total energy $\hat{H} = \hat{f}_{2m}^2 + \hat{V}(x,t)$ and has no time-dependence
- In the time-independent case, we can view the Schrödinger equation as an eigenvalue equation: By = EY scalar
 Sequence of an operator are the possible values that might be returned by an experiment.

Probability current

- . If the probability of a particle existing in one region decreases, it must increase elsewhere.
- . This can be modeled as the flux of a probability current J.

$$i \frac{1}{2} \int_{V} P dV = \int_{V} \Psi^{*} \hat{H} \Psi - (\hat{H} \Psi^{*}) \Psi dV$$

$$= -\frac{1}{2} \int_{V} \nabla \cdot \left[(\nabla \Psi) \Psi^{*} - (\nabla \Psi^{*}) \Psi \right] dV$$

$$= -\frac{1}{2} \int_{V} \int_{V} (\nabla \Psi) \Psi^{*} - (\nabla \Psi^{*}) \Psi dV$$

$$= -\frac{1}{2} \int_{V} \int_{V} (\nabla \Psi) \Psi^{*} - (\nabla \Psi^{*}) \Psi dV$$

$$= \int_{V} \frac{1}{2} \int_{V} P(\Sigma, \Psi) dV = - \int_{S} \int_{V} (\Sigma, \Psi) \cdot d\Sigma$$
Conservation of probability implies $\frac{\partial P}{\partial \Psi} + \nabla \cdot \Sigma = 0$

$$= \int_{V} \int_{V} (\Sigma, \Psi) dV = \int_{V} \int_{V} (\Sigma, \Psi) dV$$

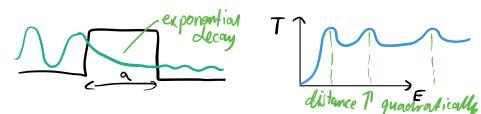
$$= \int_{V} \int_{V} (\Sigma, \Psi) dV = \int_{V} \int_{V} (\Psi^{*}, \Psi) dV$$

Unbound particles

The time-independent Schrödinger equation implies wave behaviour: $-\frac{\hbar^{2}}{2m} \frac{\partial^{2} \Psi}{\partial x^{2}} = (E-V) \Psi \implies \Psi(x,t) = Aexp(i(hx-art))$ $W Hh \qquad K = \pm \sqrt{\frac{2m(E-V)}{\pi^{2}}}$

Lif E>V, the solution is a travelling wave with real
wavenumber and well-obtined momentum
Lif E
$$Y(x,t) = Ae^{-\kappa x}e^{-i\omega t} \in e^{t\kappa x}$$
 not physical.

· A plane wave requires 1A12 > 0 to normalise, but this is because it assumes an infinite number of particles. Hence we typically analyse either wavepackets or unbound particles in a potential landscape. · To solve the TISE, we apply appropriate B.Cs: 4 Finite and continuous La 34/201 finite and continuous. Ly if V=00, V=0 and O'Y/2x may be discontinuous. • For a plane wave, the probability current is $T = \frac{\pi k}{m} |A|^2$ e.g Potential step · Energy same on both sides so a constant $T = \frac{k_1 - k_2}{k_1 + k_2} \qquad T = \frac{2k_1}{k_1 + k_2} \qquad probabilit$ $T_1^- = |Ar|^2 \frac{t_1k_1}{m} \qquad T_2^- = |At|^2 \frac{t_1k_2}{m} \qquad Flux$ probability · IF E < V for a potential step, the probability flux is completely reflected (although there is a nonzero chance of finding the porticle in the barrier) · For a barrier of finite width, it is possible for there to be flux on the four side - quantum tunnelling. There are resonances when Ka=n IT, resulting in perfect transmission.



· Tunnelling is what allows a particles to escape the nucleus during radioactive decay. The rate of escape depends exponentially on the KE of the particle.

Bound particles

· When a particle is bound, the solutions of Schrödinger's equation form a set discrete states. · For an infinite square well of depth Vo, the particle can only exist in bound states. $4 B C_{3} \Rightarrow k = \frac{n\pi}{\infty} \Rightarrow E_{n} - V_{0} = \frac{h^{2}\pi^{2}n^{2}}{2ma^{2}}$ 5 n is the quantum number, specifying a state. Is the particle cannot be stationary, so there is a zero point energy corresponding to n=1 . The wavefunctions are the eigenfunctions of the Hamiltonian: HY=E4, with eigenvalues E is because of the confinement, we have discrete En, Yn. is the normalised wavefunctions are orthonormal. V(x) Finite square well · For E>0, there is a continuous rounge of unbound solutions · For -ULELO, bound states exist. Asin kx We fit a solution of the form:
This gives rise to two classes of solution: 1. Odd within well k, cot (kg) = - K 7 from 4, 4 2. Even within well k, $\tan(\frac{k_{1}q}{2}) = \mathcal{X}$ S B.G

 These must be solved graphically. Sul X = kg, Y = 2g
 X²+Y² = ma²/2k² Vo, corresponding Y
 to a circle on the XY plane
 b plot e.g X tan X for the even solutions and find htersections
 Small Vo is energies / probabilities then depend on X and Y. · Characteristics of the solutions can be derived from the graph: 6 the ground state is even 1> states alternate between even and odd is always at least one bound state no matter how small Vo - the minimum-energy bound state is even.

Quantum Manmonic Oscillators · Many real potentials can be modelled as locally guadrate. · Classically, we can write such a potential as $V(x) = \frac{1}{2}m\omega^2 x^2$ · Using the TISE: $\frac{\partial^2 Y}{\partial x^2} + \left[\frac{2mE}{\pi^2} - \frac{m^2 \omega^2 x^2}{\pi^2}\right] Y = 0$ Ly let $q = x \sqrt{\frac{m\omega}{\hbar}}, \quad \mathcal{E} = \frac{2\mathcal{E}}{\hbar\omega}$ $45 \text{ sub } \chi(q) = \gamma(x) = \gamma(q \sqrt{\frac{\pi}{mw}})$ $\frac{1}{2} \cdot \frac{\Im^2 \chi(q)}{\Im q^2} + (\xi - q^2) \chi(q) = 0$ Four away from the well, as 19/300, we have $X \propto e^{-q^2/2}$ · We can assume a solution of the form $\mathcal{R}(q) = \mathcal{H}(q) e^{-q^2/2}$

=) $\frac{\Im^2 H(q)}{\Im q^2} - 2q \frac{\Im H(q)}{\Im q} + (\varepsilon - 1) H(q) = 0$ Hermite's equation Ly the Hermite polynomials can be generated with the Rodvigues formula: $H_n(q) = (-1)^n e^{q^2} \frac{d}{dq^n} (e^{-q^2})$ $\begin{array}{l} \text{4 the energy eigenvalues are then } E_n = (n+\frac{1}{2}) \frac{\pi v}{4}, \\ \text{with associated eigenfunction} \\ \text{Y}_n(x) = \frac{1}{[2^n n! \int_{H}]} \frac{1}{v_2} \frac{1}{H_n} \left(x \sqrt{\frac{mw}{\pi}}\right) e^{-\frac{mw}{2\pi}x^2} \\ \text{4 the solutions are orthonormal} \end{array}$ The correspondence principle . In the limit of large quantum numbers, QM tends to classical mechanics. • e.g the infinite square well can be modelled as $\Psi(x) = [e^{inx/a} + e^{-inx/a}] S(x) \ll top-hat$ convolued with sinc (by (-T)) as n increased, the since tourn to duldar. 4) in momentum space, this is two deltas 4) as n increases, the since tend to deltas, $p \to p$ i.e. the particle is either moving left or $-nh\pi/a$ $nh\pi/a$ i.e the particle is either moving left or (classical case) right with a perfectly-specified momentum

. The potential energy of a diatomic molecule can be modelled as a harmonic oscillator with a reduced mass $\mu = \frac{m_{i} m_{z}}{m_{i} r m_{z}}$ The excitation of a state is governed by the Boltzmann dist: $P_n \propto e^{-BEn}$ $B = \frac{1}{K_0T}$, $E_n = (n+\frac{1}{2})\hbar\omega$ Lafor the normalized distribution: $\langle E \rangle = \sum_{n=1}^{\infty} (n+\frac{1}{2})\hbar\omega e^{-(n+\frac{1}{2})\hbar\omega}$ $\Rightarrow \langle E \rangle = \frac{1}{2} \hbar w + \begin{pmatrix} hw \\ hw \\ hw \\ e \end{pmatrix} \in Planck distribution$ • The vibrational heat capacity of N diatomic molecules is given by $Cvrb = N \xrightarrow{245} 21$. This tends to the classical limit as T->co.

. An element in a vector space com be written as a ket vector (a). This can be used to represent e.g column vector, matrix, function etc. · For every ket vector there is a unique bra vector (6) which exists in the dual space (for matrices, the bra is the conjugate-transpose of the ket) . The inner product returns a complex number $\langle a/b \rangle = \langle = \langle b | a \rangle^*$ Svectors are orthogonal if <alb>=0 5 the norm of a vector is [<a1a2]"2 in an orthonormal vector space, (an Iam) = Snm · Vectors can be written as linear combinations of basis vectors $|a\rangle = 2a_n|a_n\rangle$ 5 functions must be square-integrable to have a series representation of the form Y(x) = E an Yn (2) 4 basis functions depend on boundary conditions is for this to be true for any la, the bans set must be complete, i.e ($\sum_{n=1}^{\infty} |a_n| < a_n| = 1$) 13 to find the coefficients, we exploit orthonomality. e.g. the mth coefficient is given by $q_m = \langle \Psi_m | \Psi \rangle$ 4) this is equivalent to projecting 14> onto a basis rector.

For a continuous vector space, $\Psi(x) = \int_{\infty}^{\infty} \Phi(k) \chi(k, x) dk$ 4 ne-ded for unbound particles weighting basis functions 4 the orthogonality condition is $\int_{-\infty}^{\infty} \chi^*(k_1, x) \chi(k_2, x) dx = S(k_2 - k_1)$ 4 the completeness relation $\int_{-\infty}^{\infty} \chi(k_1, x) \chi^*(k_2, x) dx = S(x_1 - x_2).$ $4 \text{ this is satisfied for } \chi(k_1, x) = \int_{ZH}^{\pi} e^{ikx}, \text{ giving the}$ Fourier Transform

· Operators map between two vectors: $|\psi\rangle = \hat{A}|\psi\rangle$ by the outer product of two vectors $|b\rangle$ (a) is an operator.

Lo operators are distributive: $(\hat{A} + \hat{B})|a\rangle = \hat{A}|a\rangle + \hat{B}|b\rangle$ The commutator of two operators describes the degree to which two operators commute: $[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$ An operator may be represented in a given basis: $\hat{A}|a\rangle = \hat{I}\hat{A}\hat{I}|a\rangle = \sum_{n=1}^{\infty} |u_n\rangle \langle u_n|\hat{A}|u_n\rangle \langle u_n|a\rangle$

⇒ (unifilum) is just a complex number, which we write as Anm. These are the matrix elements of Â
 ⇒ A = ∑∑ Anm | un) (um)
 ⇒ A = ∑∑ Anm | un) (um)

1) for square-integrable functions, Ann = J 4n* A 4m cluc

- Any operator of the form $\hat{p} = |\psi\rangle \langle \psi|$ is a $|\psi\rangle$ projection operator, projecting the operand onto the vector $|\psi\rangle$.
 - An operator maps kets to kets. The corresponding operator in dual space (i.e mapping the bras) is the adjoint of Â, Â⁺.
 b) defined by
 b) defined by
 c) Um |Â|Un> =
 Un |Â+|Um> #
 Um |Â|Un> =
 Un |Â+|Um> #
 Um |A+|Um> #
 Um |A
 - () to compose adjoints, (AB)' = B'A' () every linear operator has a unique adjoint

Hermitian operators

- A self-adjoint (Hermitian) operator satisfies A⁺ = A
 The act of measuring a physical quantity in QM is represented by a Hermitian operator.
 b hence the expected values are real
 (A) = (YIAIY) = (YIATIY)* = (A)*
 b Observable (=> Itermitian
 It is easy to show p is Hermitian with IBP. So p² is
 - also Hermitian and real $V(x) \Rightarrow A$ is Hermitian.

For a composite operator ÂB to be Hermitian, Â and B must be Hermitian and commute.
if they do not commute, we can use the anti-commutator to construct an operator that commutes \$\begin{pmatrix} AB \$\frac{2}{3} = AB + BA\$
\$\begin{pmatrix} C = \$\begin{pmatrix} AB \$\frac{2}{3} = AB + BA\$
\$\begin{pmatrix} C = \$\begin{pmatrix} AB \$\frac{2}{3} = AB + BA\$
\$\begin{pmatrix} C = \$\begin{pmatrix} AB \$\frac{2}{3} = AB + BA\$
\$\begin{pmatrix} C = \$\begin{pmatrix} AB \$\frac{2}{3} = AB + BA\$
\$\begin{pmatrix} C = \$\begin{pmatrix} AB \$\frac{2}{3} = AB + BA\$
\$\begin{pmatrix} D = \$\begin{pmatrix} AB \$\frac{2}{3} = AB + BA\$
\$\begin{pmatrix} D = \$\begin{pmatrix} AB \$\frac{2}{3} = AB + BA\$
\$\begin{pmatrix} D = \$\begin{pmatrix} AB \$\frac{2}{3} = AB + BA\$
\$\begin{pmatrix} D = \$\begin{pmatrix} AB \$\frac{2}{3} = AB + BA\$
\$\begin{pmatrix} D = \$\begin{pmatrix} AB \$\frac{2}{3} = AB + BA\$
\$\begin{pmatrix} D = \$\begin{pmatrix} AB \$\begin{pmatrix} D = \$\begin{pmatrix} AB \$\begin{pmatrix} B \$\begin{pmatrix} D = \$\begin{pmatrix} AB \$\begin{pmatrix} B \$\begin{pmatrix} D = \$\begin{pmatrix} AB \$\begin{pmatrix} D = \$\b

- · Eigenvectors form a complete orthogonal basis sot. If we represent an operator in the eigenbasis, it is in its diagonal form: $\hat{A} = \sum_{m=1}^{\infty} a_{m} |a_{m}\rangle (a_{m})$
- Hermitian operators have real eigenvalues.
 Sconsider two eigenvectors [am], [an]. (am]A[an] = (an]A⁺[am]^{*}
 an(am]an] = am(am]an] ... (am - am)(am]an] = 0
 if n=m, we must have an=an^{*}
 Sotherwise, (am]an] = 0, so eigenvectors corresponding to distinct eigenvalues are orthogonal.
 It can be shown that the eigenvectors form a complete set, i.e. [4] = Z (n]an)
- degenerate states. Any linear combination of degenerate states is also an eigenstate. · The expected value of an operator on an eigenstate is just the eigenvalue. · Once an observable is measured, the wavefunction collapses (randomly) to one of the eigenfunctions of the observable. Hence a second measurement is certain. · For a general state 147, the expected value of A is (A>= (VIAIV) = E Cn (VIAIn) ~ by completenes = Z (n an (4) and < eigenvector \Rightarrow $\langle \hat{A} \rangle = \sum \alpha_n |c_n|^2 \in Fourier trick$ La agrees with the special case where 14> is an eigenstate 1) i.e probability of collapsing to a certain eigenfunction depends on that eigenfunction's coefficient in the expansion. 4) this easily extends to continuous basis sets. · The state vector (V(+)) avolves in time according to Schrödinger's equation. A measurement collapses $|\Psi(t)\rangle$ to the eigenstate of the operator with probability $|\phi_1\rangle$ | < Y(t) | \$\vec{p}_n) | \$\cdots | f a different measurement is made, 14> will collapse to one of that operator's Eigenstates.

· Eigenvectors with the same eigenvalue correspond to

Compatibility of observables If two observables commute, they are compatible, i.e they can both be measured to perfect precision. \Rightarrow let \hat{A} , \hat{B} be two commuting operators \Rightarrow assume \hat{A} has distinct eigenvalues \Rightarrow $\hat{A}\hat{B}|a_n\rangle = \hat{B}\hat{A}|a_n\rangle = a_n \hat{B}|a_n\rangle$ $\hat{A}(\hat{B}|a_n\rangle) = a_n(\hat{B}|a_n\rangle) \Rightarrow \hat{B}|a_n\rangle$ is an eigenstate. \Rightarrow but since $\hat{B}|a_n\rangle$ has the same eigenvalue as $|a_n\rangle$, we must have $\hat{B}|a_n\rangle \propto |a_n\rangle = b_n|a_n\rangle$ \Rightarrow hence $|a_n\rangle$ is an eigenstate of both \hat{A} and \hat{B} , so each gives a precise measurement regardless of the order.

· Both the energy and momentum of a plane wave e^{-ikx} can be measured precisely since e^{-ikx} is an eigenfunction of both $\hat{\rho}$ and \hat{H} , and $[H, \hat{\rho}] = \hat{O}$.

Generalised uncertainty

- · Any incompatible pair of observables will have an uncertainly relation.
- Define $\hat{A}_d = \hat{A} \langle A \rangle \Rightarrow \langle \triangle A \rangle^2 = \langle A_d^2 \rangle$ and likewise $(\triangle B)^2 = \langle B_d^2 \rangle$.
- For a general state $|\Upsilon\rangle$, consider $|\phi\rangle = (\hat{A}_d + i\lambda \hat{B}_d)|\Upsilon\rangle$ by the norm of this vector must be positive

 $\langle \varphi | \varphi \rangle = \langle \Psi | (\hat{A}_{d} - i\lambda \hat{B}_{d}) (\hat{A}_{d} + i\lambda \hat{B}_{d}) | \Psi \rangle$ $= (\Delta A)^{2} + \lambda^{2} (\Delta B)^{2} + \lambda \langle i[\hat{A}_{d}, \hat{B}_{d}] \rangle \neq 0$ $\Rightarrow i[\hat{A}_{d}, \hat{B}_{d}] \text{ is hermitian so } \langle i[\hat{A}_{d}, \hat{B}_{d}] \rangle \text{ is real.}$ $\Rightarrow [\hat{A}_{d}, \hat{B}_{d}] = [\hat{A}, \hat{B}] \text{ by expanding}$ $\Rightarrow \text{ we can find the tighter t bound by minimising w.r.t } \lambda;$ $\langle \varphi | \varphi \rangle_{min} \text{ must still be } \lambda 0$ $\Rightarrow [\Delta A \Delta B] \Rightarrow \frac{1}{2} | \langle i[\hat{A}, \hat{B}] \rangle | \qquad \text{ frue for any observables.}$

The minimum uncertainty state for any two operators is when $\langle \phi | \phi \rangle = 0$, i.e $(\hat{A}_d + i\hat{\lambda}\hat{B}_d) | \psi \rangle = 0$. Let $e \cdot g$ for \hat{x} and $\hat{\rho}$: $(\hat{x}_a + i\hat{\lambda}\hat{\rho}_d) | \psi \rangle = 0$ $\Rightarrow [(x - (x)) + i\hat{\lambda}(-i\hbar\frac{\partial}{\partial x} - \langle \rho \rangle)] \psi(x) = 0$ $\Rightarrow \frac{\partial \psi}{\partial x} = [-\frac{(x - (x))}{\lambda \hbar} + \frac{i(\rho)}{\hbar}] \psi(x)$

- (L> golving this differential equation gives the min uncertainty state, in this case the Gaussian wavepacket Y(x) = e^{-(x - (x))²/2#2} e^{ipsc/b}.
 Dx and Dp can be calculated from the standard
 - expressions Sign 4 x 4 dx and Sign 4 th 2 x dx.

Robert Andrew Martin

Ladder operators • The ground state is such that $\hat{\alpha} \mid \phi_0 \rangle = (0)$, i.e the The QHO is $\vec{H} = \frac{1}{2m}\vec{\rho}^2 + \frac{m\omega^2}{2}\vec{x}^2$. Introduce the operator lovering sequence must terminate with E = tranz $\hat{\alpha}$ and its plermitian conjugate $\hat{\alpha}^{\dagger}$: Is all states can then be generated: $|\varphi_n\rangle = (\hat{a}^{\dagger})^n / \varphi_0$ $\hat{\alpha} = \sqrt{\frac{m_{av}}{2\hbar}} \hat{x} + i \frac{1}{\sqrt{2m_{FW}}} \hat{p} \qquad \hat{\alpha}^{\dagger} = \sqrt{\frac{m_{av}}{2\hbar}} \hat{x} - i \frac{1}{\sqrt{2m_{FW}}} \hat{p}$ 4) the associated energies are not at + now · (Pn> is an eigenstate of both H and N, with eigenvalues Sit can be shown that $[\hat{a}, \hat{a}^{\dagger}] = 1$ E and n= = the - 2 respectively. Thus one quantity Lythe Hamiltonian can be expressed in terms of a: determines the other with zero uncertainty. \therefore $\hat{H}|\phi_n\rangle = E_n |\phi_n\rangle$ with $E_n = (n+\frac{1}{2})$ for $\hat{H} = \hbar \omega (\hat{a}^{\dagger} \hat{a} + \frac{1}{2}) = \hbar \omega (\hat{a} \hat{a}^{\dagger} - \frac{1}{2})$ · We can normalise as follows: $\hat{a}|\phi_n\rangle = c_n|\phi_{n+1}\rangle \Rightarrow \langle \phi_n|\hat{a}^{\dagger}\hat{a}|\phi_n\rangle = |c_n|^2 \langle \phi_{n-1}|\phi_{n-1}\rangle$ · Consider an eigenstate $|\phi\rangle$ of H such that $H|\phi\rangle = E|\phi\rangle$ 5 we can then show that: L> so if $|\phi_{n-1}\rangle$ is normalised, $C_n = \sqrt{n}$ $A alp > = (E - \pi \omega) alp >$ $A a^{+}l p > = (E + \pi \omega) a^{+}l p >$ $\therefore \quad \hat{a} |\phi_n\rangle = \sqrt{n} |\phi_{n-1}\rangle$ and likewise $\hat{a}^{\dagger}(\phi_n) = \sqrt{n+1} |\phi_{n+1}\rangle$ is a general state is thus given as $|\phi_n\rangle = \frac{(at)}{\sqrt{n!}} |\phi_0\rangle$ Lat is the creation (raising) operator because it increases the energy of the system by a quantum. · The different number states form an orthogonal complete bà is the annihalation (lowering) operator. set, so arbitrary states can be repr. as a LC. . They both constitute ladder operators: . We can explicitly find the form of the ground state: $\hat{\alpha}|\phi_{0}\rangle = 0 \implies \left[\int_{2\pi}^{m_{tv}} \hat{x} + i \int_{2\pi}^{m_{tv}} \hat{r} \right] \phi_{0}(x) = 0$ $\hat{a}^{\dagger}(\phi_{n}) = |\phi_{n+1}\rangle \qquad \hat{a}(\phi_{n}) = |\phi_{n-1}\rangle$ $\Rightarrow \phi_{o}(x) = \left(\frac{m\omega}{\pi t}\right)^{1/4} e^{-m\omega x^{2}/2t} \int_{state}^{state} \int_{state}^{this} \frac{ds}{ds} q$ · ât à is an observable called the number operator N. $\Rightarrow \hat{H} = \hbar \omega (\hat{N} + \frac{1}{2})$ L'higher order states can be generated recursively, L'it measures the number of quantum excitations (e.g photoni) L'ic the number of unique times a photon can be giving the Hermite polynomials as before. · For the number states of the QMO: $\Delta x \Delta p = (n + \frac{1}{2})\hbar$ removed then replaced.

The density operator

- The density operator allow us to describe a classical ensemble of quantum states.
- The expectation of an operator can be written as a trace: $\langle A \rangle \equiv \langle \Psi | \hat{A} | \Psi \rangle = Tr[\langle \Psi | \hat{A} | \Psi \rangle] \leftarrow it is just a number$ $\therefore \langle A \rangle = Tr[\hat{A} | \Psi \rangle \langle \Psi |] \leftarrow Tr AB = TrBA$

Laif is Hermitian, <\bar{A} is real so <\brace{A} = Tr[14><71Â] In an ensemble, each member may exist in one of M states, each with probability P: The classical expectation is

$$\langle A \rangle = \sum_{i=1}^{\infty} P_i \langle Y_i | \hat{A}^i | Y_i \rangle = \sum_{i=1}^{\infty} P_i \operatorname{Tr} \left[| Y_i \rangle \langle Y_i | \hat{A} \right]$$
$$= \operatorname{Tr} \left[\sum_{i=1}^{\infty} P_i | Y_i \rangle \langle Y_i | \hat{A} \right]$$

·This defines the density operator

 $\hat{\mathcal{O}} = \sum_{i=1}^{\infty} P_i |\mathcal{U}_i\rangle \langle \mathcal{U}_i| \implies \langle A \rangle = Tr[\hat{\mathcal{O}}\hat{A}]$

⇒ 0 is Hermitian so is an observable
⇒ idempotent when only one classical state is present 2 i.e 0ⁿ = 0 for 0 = 14;>(4:1 pure state
> Tr[0]=1 is a normalisation condition.
• Quantum states must be added coherently, i.e including the phase. 14> = eⁱ⁰¹ 14:> + eⁱ⁰² 142>. · However, for a classical mixed state, there is no phase term: 14><41 = P114><41 + P2142><421.

Functions of operators . The function of an operator is defined to be the power-series of the function, with the variable replaced by the operator: $e^{-\hat{x}} = \hat{I} - \hat{x} + \hat{x}_{2}^{2} - \hat{x}_{3}^{3} + \cdots$ · If the operator ? is expressed in diagonal form, powers are just related to scalar powers of the eigenvalues $\hat{\chi} = \sum_{i=1}^{\infty} x_i |\mathcal{Y}_i \rangle \langle \mathcal{Y}_i | \implies \hat{\chi}^n = \sum_{i=1}^{\infty} x_i^{n_i} |\mathcal{Y}_i \rangle \langle \mathcal{Y}_i |$ => F(R) = E F(xi) [vi) (vi) ruis eigenbours Hie F(X) has the same eigenvectors but eigenvalues F(Li), which is obvious since the eigenvalues are measured values. 13this analysis applies to an arbitrary state 10> as long as we are in the eigenbass. - In a classical thermodynamic system, energy states are distributed with pdf == e^{-En/kT} where 2 normalises.

L) the density operator is then: $\hat{O} = \frac{1}{2} \sum e^{-E_n/kT} |\Psi_n\rangle \langle \Psi_n| = \frac{1}{2} e^{-\hat{H}/kT}, \quad Z = Tr[e^{-\hat{H}/kT}]$ Is where for a QHO, $\hat{H} |\Psi_n\rangle = E_n |\Psi_n\rangle, \quad E_n = (n+\frac{1}{2}) \text{ trave } |\Psi_n\rangle.$

Robert Andrew Martin

The expected energy for a thermal state:
$$fire$$
 classical
 $Tr(\partial A] = \frac{1}{2}Tr\left[\sum_{n=0}^{\infty}\sum_{m=0}^{\infty}e^{-En/hT}|\Phi_n\rangle\langle\Phi_n|E_m|\Phi_m\rangle\langle\Phi_m|\right]$
 $=\frac{1}{2}Tr\left[\sum_{n=0}^{\infty}E_ne^{-En/hT}\right]$
is the normalisation can be explicitly calculated using

$$= \sum_{n=0}^{\infty} e^{-(n+\frac{1}{2}) \hbar \omega/kT} = 1 \implies \frac{1}{2} = 2 \sinh\left(\frac{\hbar \omega}{2kT}\right)$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2} + \frac{1}{e^{\hbar \omega/kT} - 1}\right) \qquad \text{aspects with analysis}$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2} + \frac{1}{e^{\hbar \omega/kT} - 1}\right) \qquad \text{aspects with analysis}$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2} + \frac{1}{e^{\hbar \omega/kT} - 1}\right) \qquad \text{aspects with analysis}$$

Commutation relations
· It is easy to show:
$$[\hat{x}, \hat{\rho}^n] = i \pm n \rho^{n-1} = i \pm \frac{2}{2\rho} \rho^n [\hat{\rho}, \hat{x}^n] = -i \pm n \frac{2}{2\rho} \hat{x}^n$$

· We can the generalise to functions of the operators
 $[\hat{x}, F(\hat{\rho}, \hat{x})] = i \pm \frac{2F(\hat{\rho}, \hat{x})}{2\rho}$
 $[\hat{\rho}, F(\hat{\rho}, \hat{x})] = -i \pm \frac{2F(\hat{\rho}, \hat{x})}{2\rho}$
 $\hat{c} = n + \frac{2F(\hat{\rho}, \hat{x})}{2\rho}$

$$\begin{array}{l} & \downarrow i \cdot e \quad \left(\hat{A}, f(\hat{A})\right) = \hat{O}; \text{ intuitively obvious} \\ & \text{Useful formula:} \quad \left[AB, c\right] = A[B, c] + [A, c]B \\ & (A, Bc] = B[A, c] + [A, B]C \\ \end{array}$$

lime-dependent QM

- Time is a parameter in QM we never integrate to find the probability that an event occurred in some time period.
 A general state can be written as the K of eigenstates of A: 1Y(t) > = ~ cn(t)10n >. Since the eigenvectors are a complete basis for any t, the eigenvectors do not change with time.
- The time-dependent Schrödinger equation (TRSE) is $i\pi \frac{2}{3}h_{4}(4) > = \hat{H}(4)$
 - Lowe then sub. the LC of eigenstates given by TISE =) it $\sum_{n} \frac{d(n(f))}{df} |\phi_n\rangle = \sum_{n} c_n(f) \hat{h} |\phi_n\rangle$ $\therefore \left[it \frac{d(n(f))}{df} - c_n(f) E_n \right] = 0 \quad \forall n$

4 this ODE can be solved for Cn(+) to give

 $|\Psi(t)\rangle = \sum_{n} C_{n}(0) e^{-iE_{n}t/\hbar} |\phi_{n}\rangle$

L'in time dependence is associated with a superposition of frequency components, where phase changes over time. L'if there is only one freq component, (44) > is a stationary state. In the above formula, we have a LC of eigenvectors with weights that are functions of the eigenvalues of A. . This can be rewritten using the definition of a function of an operator

$$|\Psi(t)\rangle = e^{i\hat{H}t/t_{h}} \sum_{n} (n(0)|\phi_{n}\rangle$$

. $|\Psi(t)\rangle = e^{-i\hat{H}t/t_{h}} |\Psi(0)\rangle$

b we can thus relate the current state to an earlier state using the time shift operator: $\hat{U}(t, t_0) = e^{-i\hat{H}(t+t_0)/\hbar} \implies |V(t_0) = \hat{U}(t, t_0)|V(t_0)$

Ly Û is unitary, so its adjoint equals its inverse. Ly Û preserves inner products and therefore normalisations. Ly [Û, A] = O so eigenstates of Û are energy eigenstates

Ehrenfest's theorem

• It does not make sense to consider the time derivative of an observable, only that of its expectation. $\frac{d\langle \hat{A} \rangle}{d4} = \frac{d}{d4} \langle \Psi | \hat{A} | \Psi \rangle = \langle \frac{\partial \Psi}{\partial t} | \hat{A} | \Psi \rangle + \langle \Psi | \hat{A} | \frac{\partial \Psi}{\partial t} \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle$ $= -\frac{1}{i\hbar} \langle A \Psi | \hat{A} | \Psi \rangle + \frac{1}{i\hbar} \langle \Psi | \hat{A} | \hat{H} \Psi \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle$ $= \frac{1}{i\hbar} \langle \Psi | \hat{A} | \Psi \rangle + \frac{1}{i\hbar} \langle \Psi | \hat{A} | \hat{H} \Psi \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle$ $= \frac{1}{i\hbar} \langle \Psi | \hat{A} | \Psi \rangle + \frac{1}{i\hbar} \langle \Psi | \hat{A} | \hat{H} \Psi \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle$ $= \frac{1}{i\hbar} \langle \Psi | \hat{A} | \Psi \rangle + \langle \frac{\partial \hat{A}}{\partial t} \rangle$

in the Schrödinger approach to QM, observables are time-indep.

4) if \hat{A} commutes with \hat{H} , $\langle \hat{A} \rangle$ is invariant. 4) in a stationary state, $\langle \hat{A} \rangle$ is invariant for any \hat{A} . 4. However, Ehrencest's theorem is not useful for actually calculating the coefficients. $|Y(4)\rangle = \sum_{n=1}^{\infty} c_n (0) e^{-i\sum_{n=1}^{n} t/t_n} |\phi_n\rangle$ $\Rightarrow \langle Y(t)| = \sum_{n=1}^{\infty} c_n^*(0) e^{i\sum_{n=1}^{n} t/t_n} \langle \phi_n|$ $\therefore \langle \hat{A} \rangle = \sum_{n=1}^{\infty} c_n^*(c_n) e^{i(\sum_{n=1}^{n} E_n)t/t_n} A_{mn} \in \langle \Phi_n| \hat{A}| \Phi_n\rangle$

• Consider a particle moving in a potential: $\frac{d(\hat{x})}{dt} = \frac{1}{h} \langle i[A, \hat{x}] \rangle, \quad \hat{H} = \hat{f}^{2}_{2m} + \hat{v}(\hat{x})$ $\downarrow = [\hat{p}^{2}, \hat{x}] = -2i\pi\hat{p}, [\hat{v}(\hat{x}), \hat{x}] = 0$ $\Rightarrow d(\hat{x}) = \hat{f}^{2}_{m} \quad e \quad \hat{x} = \hat{f}_{m} \quad clasically$ $\downarrow = d(\hat{x}) = \hat{f}_{m} \quad e \quad \hat{x} = \hat{f}_{m} \quad clasically$ $\downarrow = d(\hat{p}) = \frac{1}{h} \langle i[A, \hat{p}] \rangle = \frac{1}{h} \langle [\hat{v}(\hat{x}), \hat{p}] \rangle = -\langle \frac{d\hat{v}(\hat{x})}{d\hat{x}} \rangle$ $\therefore \quad \frac{d(\hat{p})}{dt} = \langle F(\hat{x}) \rangle \quad e \quad we \quad \text{is a consequence}$ $= f(\hat{x}) \quad e \quad f(\hat{x}) \quad \text{only when the QM uncertainties}$

are small compared to the scale of the system

Time-every uncertainty

The time-energy uncertainty principle is fundamentally of different character to x-p uncertainty.
From the generalised uncertainty principle,
SEDA >> ± | (i[A, A]) | = ± | o(A) | < from Fhrenfest
SE(ΔA/(d(A))) >> ±
Sthis quantity can be interpeted as the Δt required for the expectation value to change by an amount

- equal to the uncertainty => $\Delta E \Delta + > \frac{\pi}{2}$
- 4) At is not an uncertainty
- For small AE, it takes the particle a long time to significantly change the value of an observable.
 For a stationary state, Star so <A> is constant.

Heisenberg's approach

Thus Far we have used the Schrödinger approach, in which state vectors evolve but observables (and eigenstates) don't.
 The Heisenberg approach treats operators as time-dependent (YCF)> = e^{-ifit}/t (YCG)>

 $\Rightarrow \langle A(t) \rangle = \langle \Psi(t) | \hat{A} | \Psi(t) \rangle = \langle \Psi(0) | e^{i\hat{A}t/t} \hat{A} e^{-i\hat{A}t/t} | \Psi(0) \rangle$

- Hence the expectation can be written in terms of the time-dependent operator Â^H(t):
 (A(t)) = (4(0)) A^M(4(0)) Â^M(t) = e^{iHt/t}Â e^{-iĤt/t}
 The Heisenberg equation is the equivalent of the TDJE:
 - $i\hbar \frac{d\hat{A}^{H}}{dt} = [\hat{A}^{H}, \hat{n}]$

QM in 3D

· for a wavefunction in 3D, we have $P(\underline{r}) = |\Psi(\underline{r}, t)|^2 d_{\underline{r}}^3$ · Operators become vector operators, e.g $\hat{p} = -i\pi \nabla$, as do eigenvalues.

Position and momentum in orthogonal directions commute and can thus be measured precisely. [\$\hfis\$], \$\hfis\$k]=its \$\mathcal{S}_{jk}\$
Numerical methods are often used to solve the schrödinger equation in spherical coordinates.

bital angular momentum $L = \mathcal{L} \times \mathcal{L} = \begin{vmatrix} i & j & k \\ -\infty & y & z \\ -\infty & y & z \end{vmatrix} \implies L_x = \hat{y}\hat{f}_2 - \hat{z}\hat{f}_y \qquad \text{since orthogonal} \\ \hat{L}_y = \hat{z}\hat{f}_x - \hat{x}\hat{f}_z \qquad \text{commute.} \\ \hat{L}_z = \hat{x}\hat{f}_y - \hat{y}\hat{f}_x \qquad \hat{L}_z = \hat{y}\hat{f}_y - \hat{y}\hat{f}_y + \hat{y}\hat{f}_x \qquad \hat{L}_z = \hat{y}\hat{f}_y - \hat{$ Orbital angular momentum • The 3D angular momentum operator is observable, i.e. L = L'. · [Lx, Ly] = it Lz (and cyclic perms), so only one component of [can be measured precisely (typically 2). • The total angular momentum is $L = L_{x} + L_{y} + L_{z}^{2}$ Ly [L', Li] = O, so measuring any component is equivalent to measuring L Sie only L and one of Lz, Ly, Lz can be precisely known. . The ladder operators for Lz ave: $\hat{L}_{+} = \hat{L}_{x} + i\hat{L}_{y}$ $\hat{L}_{-} = \hat{L}_{x} - i\hat{L}_{y}$

Lo they are dearly not observable Lo useful commutation relation: $[\hat{L}_{2},\hat{L}_{1}]=\hbar\hat{L}_{1} \implies \hat{L}_{2}\hat{L}_{1}=\hat{L}_{1}\hat{L}_{2}+\hbar\hat{L}_{1}$ Loconsider an eigenstate 10/2) of Lz with eigenvalue at , where a is a real number. If we apply the ladder then measure Lz: $L_2 \tilde{L}_+ | \phi_{\alpha} \rangle = (\alpha + i) \hbar \tilde{L}_+ | \phi_{\alpha} \rangle$ $L_2 L_1 | \phi_{\alpha} \rangle = (\alpha - 1) \hbar L_1 | \phi_{\alpha} \rangle$ Shence Lz is being changed in units of th, and measurements of Lz are quantised. · However, L± closs not change the magnitude of the total angular momentum: 4 1Pas is also an eigenstate of L' since I' and Lz commute. => $L^2(P_x) = \Lambda t^2(P_x)$ $L_{j}\left[L^{2}, \tilde{L}_{\pm}\right] = 0 \implies \tilde{L}^{2} \tilde{L}_{\pm}\left[\varphi_{n}\right] = \Lambda \hbar^{2} \tilde{L}_{\pm}\left[\varphi_{n}\right], ie$ the eigenvalue is unchanged over after operating L. but we must have $\langle L_z^2 \rangle \leq \langle L^2 \rangle$, so $\alpha^2 \leq \Lambda$. Is hence, unlike at and a, angular momentum ladders have a max and min. integer values (because of symmetry) induced by $M_{L} = L, L - 1, L - 2, ..., 0, ..., -(L - 1), -L$ 5 there are 21+1 eigenvalues, including L=0.

Robert Andrew Martin

. The value of L depends on x, which depends on the eigenvalue 1t of the total momentum operator. Is the explicit relation is derived by considering the highest eigenstate, such that $L_2(\phi_i) = L t(\phi_i)$ 4> but (+1\$\vert\$_) =0 to terminate the sequence La consider (LL+ = L2-L22-th Lz and operate on the highest eigenstate. $\Rightarrow O = /\hbar^2 - (2\hbar^2 - (\hbar^2))$ $\Rightarrow \Lambda = l(l+1)$ is called the orbital angular momentum quantum number and relates to the total L? Lo mi ∈ L, L-1, ..., O, ..., -L is the azimuthal /magnetic angular momentum quantum number and relates to a measurement of Lz. $L summary: [L^2]L, m_i > = U(L+1)h^2|L, m_i >$ $L_2(l,m_i) = m_i h |l,m_i\rangle$

Because angular momentum is quantised, so is the magnetic
dipole moment. For a classical electron orbit:
S
$$\mu_z = IA = -\frac{e}{2\pi r/v} \cdot \pi r^2 = -\frac{e}{2m}L_z$$

Ls but $\langle L_z \rangle = m_c \hbar \Rightarrow \mu_z = -\frac{e}{2m}m_c$
HB = $\frac{et}{2m}$ is the Bohr magneton, revealing that
 $\mu_z = -\mu_B m_c$ so μ_z is quantised.

Orbital angular momentum eigenfunctions • The angular momentum operator in spherical coordinates is found by substituting $p = -i\hbar \nabla$ into Lx = y/2 - 2/y etc. • The ladder operators are then: $\hat{L}_{\pm} = \hbar e^{\pm i\phi} (\pm \frac{2}{2\theta} + i\omega t\theta \frac{2}{2\phi})$

Because all the angular momentum operators depend sdely on θ and ϕ , the eigenfunctions must be angular $V_{L,m_1}(\theta, \phi)$ $L_2 Y = m_1 t Y \Rightarrow -it_{\partial \theta} Y = m_1 t Y$ $\Rightarrow V_{L,m_1}(\theta, \phi) = f_{L,m_1}(\theta) e^{im_1 \phi}$. \Rightarrow since the wavefunction is single-valued, $Y_{L,m_1}(\theta, \phi + 2\pi) = Y_{L,m_1}(\theta, \phi) \Rightarrow e^{i2\pi m_1} = 1$ \Rightarrow this explains why m_1 must be integers. $\cdot L_1$ acting on the highest eigenstate $(m_1=1)$ must give zero $\cdot L_1 |L_1L_2 = 0 \Rightarrow t_1 e^{i\theta} (\frac{2}{\partial \theta} + integ \frac{2}{\partial \theta}) Y_{L_1}(\theta, \phi) = 0$ $(\cdot, \forall using Y_{L_1}(\theta, \phi) = F_{L_1}(\theta) e^{-i(\theta)}$: $Y_{L_1}(\theta, \theta) = (L_1 in \theta)^{L_2} e^{i(\theta)}$ · L- lavers the eigenstate so we can find (1, m1-1(0, B) $(I_{l,m_{l}} Y_{l,m_{l}-1}(\theta, \phi) = f e^{-i\phi} (-\frac{1}{2\phi} + icol \theta^{2}_{\phi}) Y_{l,m_{l}}(\theta, \phi)$ 4 sub $Y_{l_1m_l-1}(\theta, p) = F_{l_1m_l-1}(\theta) e^{i(m_l-1)\phi}$ is these eigenfunctions can then be normalised over all angles: $\int_{\partial} \frac{\partial}{\partial t} \int_{\partial} \frac{\partial}{\partial t} \left[Y_{\ell_1} m_{\ell_1} \left(\theta_{\ell_1} \phi \right) \right]^2 \sin \theta d\theta d\phi = 1$ · The orthonormal eigenfunctions that satisfy the relationships cure spherical harmonics e.g. $Y_{2,\pm 2} \propto \sin^2 \theta e^{\pm 2i\theta} e^{-\beta}$ is the latter in Y2, t1 & sintros de tip & apply lowering Y2,0 x 3cg²Q-1 D operator 5 they have useful symmetries, e.g: $Y_{l,-m_{l}}(0,\phi) = (-1)^{m_{l}} Y_{l,m_{l}}(0,\phi) = Y_{l,m_{l}}(0,\pi-\phi)$ Diatomic molecules . The energy levels depend on angular momentum eigenvalues (but specific dependence differs by system). For a rigid diatomic molecule, $E = \frac{1}{2}I\alpha^2 = \frac{L^2}{2T}$ ·Hence the energy eigenvalues are: $E_{l} = \frac{l(l+1)\hbar^{2}}{2\pi}$ with degeneracy 2l+1

The heat capacity of a quantum system is [→]CE[→] T. There is thus a rotational contribution to the heat capacity
(rot >0 as T > 0 and Crot > R as T > ∞

Orbits with potentials
. The Hamiltonian in spherical coordinates can be written in
terms of C ² :
terms of \hat{L}^2 : $\hat{H} = -\frac{\pi^2}{2m} \frac{1}{r^2} \frac{3}{2r} \left(r^2 \frac{3}{2r} \right) + \frac{\hat{L}^2}{2mr^2} + \hat{V}(r)$
Ly the eigentimetions have the same angular dependence as
before, but there is now radial behaviour:
Ψ_n , $l_i M_i(r, \theta, \phi) = R_{n,i}(r) \Psi_{i,m_i}(\theta, \phi)$
13 the radial eigenfunctions Rn, ((r) depend on n, the
principal quantum number.
is states with the same n, l but different m, are energy-
de generate.
· H Vn, L, M, = En, 1 Vn, L, M After operating, we can divide
· A Vn, l, m, = En, i Vn, l, m After operating, we can divide out Yl, m(0, 0) and substitute Un, l(r) = r Rn, l(r).
$-\frac{\hbar^{2}}{2m}\frac{\partial^{2}U_{n,1}}{\partial r^{2}} + \left[\frac{U(l+0\hbar^{2}+V(r))}{2mr^{2}}U_{n,1} = E_{n,1}U_{n,1}\right]$
5 this is the 10 TISE, except the effective potential
is now $V(r) + \frac{\langle L^2 \rangle}{2mr^2}$

• For a hydrogen-like atom, there is a central potential $V(r) = -\frac{2e^2}{4\pi\epsilon_0 r}$. Substituting into the eigenfunction equation: $\frac{\partial^2 U_{n,l}}{\partial r^2} - \left[\frac{U(L+l)}{r^2} - \frac{A}{r} + \chi^2 \right] U_{n,l} = 0$ with suitable $\frac{\partial r}{\partial r^2} = \left[\frac{U(L+l)}{r^2} - \frac{A}{r} + \chi^2 \right] U_{n,l} = 0$

seeing an odd number of beams

even range

and cyclic perms

momentim

2L+1 possible values of me, some

it to spin, an intrinsic angular

spin operator works the same way as

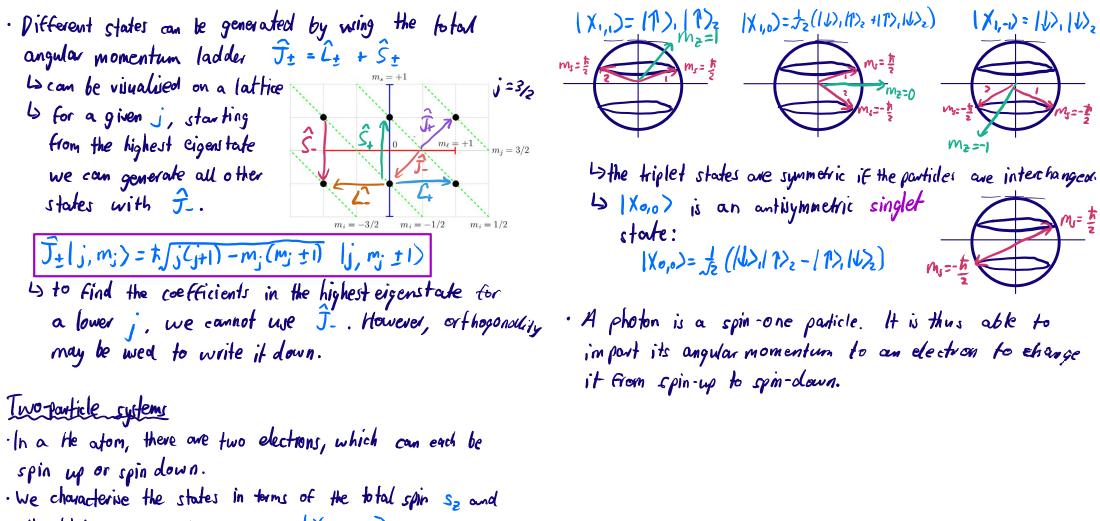
by in the limit of large r,
$$U_{n,l} \propto e^{-kr}$$

by for small r, $U_{n,l} \propto r^{t+}$
by hence we greass a solution $U_{n,l} \propto G(r)^{rt+}e^{-kr}$,
which gives the associated Laguerre equation
 $r^{2} \frac{26}{2r^{2}} + 2((+1-kr))\frac{26}{2r} + [A-2k((+1)])6=0$
 $r^{2} \frac{27k}{(q+1)}[q+2((+1)]]$
b in order he prevent exponential behaviour, we
must terminate the series of some $q=p$.
 $r^{2} \frac{27k}{(q+1+1)} - A = 0 \Rightarrow A/2k$ is an integer.
 $r^{2} \frac{27k}{(q+1+1)} - A = 0 \Rightarrow A/2k$ is an integer.
 $r^{2} \frac{2}{2r} (p+1) = A = 0 \Rightarrow A/2k$ is an integer.
 $r^{2} \frac{2}{r^{2}} (p+1) = A = 0 \Rightarrow A/2k = n$ is the principal guantum
number.
 $r^{2} \frac{2}{r^{2}} \frac{2}{arc} (r^{2}r^{4}r^{4}e^{-kr})$
 $r^{2} \frac{2}{r$

. The election is a spin-half particle so can have spin angular momentum ± 1/2 for the spin up/down states. Ly the total spin angular momentum is $\sqrt{s(s+1)} = \frac{\sqrt{3}}{2} \hbar$ it is convention to write the eigenstates as: Sal1>=+至11> Sal1>=-至14> Is any spin state is a superposition: IXS = c. 11>+ c. 11> · The anticommutator of two operators is {A, B} = AB + BA ⇒ for electrons, { Si, Si} = § Sij Ly this allow us to derive the commutation relations and eigenvalues. • We define spin ladder operators $\hat{S}_{\pm} = \hat{S}_{\pm} \pm i\hat{S}_{\pm}$: $S_{\pm}(s, m_s) = \hbar \int s(s+1) - m_s(m_s \pm 1) |s, m_s \pm 1\rangle$ 10/2 11/2 2 11/2 54 10) $4 \text{ wsing } S_x = \frac{S_1 + S_2}{2}$: $S_x | 1 \rangle = \frac{1}{2} | 1 \rangle$, $S_x | 1 \rangle = \frac{1}{2} | 1 \rangle$ $4similarly, \hat{S}_{1}(1) = \frac{1}{2} |1\rangle, \hat{S}_{1}(1) = -\frac{1}{2} |1\rangle$ Ly this can be used to Find eigenstates of Sx and Sy · Became (1) is an eigenstate of Sz (and S), there is no uncertainty in a measurement. · But Si and Sy are incompatible with Si. DSx=DSy= = so knowing that we are spin up/down does not give info about x-y components

Total angular momentum The total angular momentum \mathcal{I} is given by $\hat{\mathcal{I}} = \hat{\mathcal{L}} + \hat{\mathcal{L}}$ · Spin is not described by the time-space wave function of a particle - it is a result of additional degrees of freedom in the Dirac equation (relativistic). 13 | 14 > = | 1, + > | 5 >13 5 only acts on the 150 portion while 15 only acts on 15, t"Since components of i commute with components of \$, we have $[J_x, J_y] = i \hbar J_z$ and cyclic permutations. 1) Jz and J' are compatible, with eigenvalues m, to and j(j+1)t² respectively 4 m. takes one of 2j+1 values. · By vector addition, jmax = L+S, jmin = 11-51 by the possible is are integer steps between I min and I man Is for each value of j we have 2j+1 values of m. is for a spin-half system there are only to possible values of j, so 2(2(+1) total states. . In general, a porticular orbital state can be withen as: $\Psi_{j,m_j} = \sum_{l,m_k,s_j,m_s} (l_j,m_i,s_j,m_s) Y_{l,m_k}(\theta,\phi) > |s_j,m_s >$ is all the states are orthogonal (useful!) L> (1, mi, s, ms are the Clebsch-bordon coefficients

Robert Andrew Martin



the total Z component M_Z , i.e. $|X_{SZ,MZ}\rangle$ · For a pair of electrons, the highest state is $|X_{1,1}\rangle = |1\rangle_1 |1\rangle_2$ · B other states can be found with ladders $\hat{S}_{-} = \hat{S}_{1-} + \hat{S}_{2-}$: $\hat{S}_{-}|X_{SZ,MZ}\rangle = \frac{1}{5} \int_{SZ(SZ+1)-MZ} (M_Z-1) |X_{SZ,MZ-1}\rangle$ $= (\hat{S}_{1-} + \hat{S}_{2-}) |X_{SZ,MZ}\rangle$ · $|X_{1,1}\rangle, |X_{1,0}\rangle, |X_{1,-1}\rangle$ are the triplet states

Matrix Mechanics

Heisenberg's matrix mechanics represents states by column vectors and operators by square matrices. It is especially effective when studying discrete systems with Few states.
For a given basis set, the matrix elements of an operator A are given by Amn = < pm |A| pn> L> the operator can be reconstructed from elements using A = ∑m Amn | pm> < ph |
4 if 10n> are eigenstates, Amn = Zn Smn (diagonal)

Two-level systems

· Matrix mechanics is suitable for two-level systems (e.g. 9 abits).

- Consider a double potential well.
 4 e.g in a diatomic molecule
 4 the individual wells would each obey an eigenvalue equation: Â₁ 1\$\phi_1\$ > = E₁: 1\$\phi_1\$ > Â₂ 1\$\phi_2\$ > = E₂; 1\$\phi_2\$ > bowest evergy states when islated.

. However, a particle may tunnell between basis states so the total Mamiltonian H must include coupling terms: 6 diagonalise to Find eigenstates: $\begin{vmatrix} E_1 - \lambda & Z \\ Z^* & E_2 - \lambda \end{vmatrix} = 0 \implies \lambda = \frac{1}{2} \left(E_1 + E_2 \pm \sqrt{(E_2 - E_1)^2 + 4Z^2} \right)$ • For two identical wells: $\lambda \pm = E \pm |\mathcal{I}|$ $\Rightarrow |\Psi\rangle_{\pm} = \frac{1}{\sqrt{2}}(|\Phi_1\rangle_{\pm}|\Phi_2\rangle)$ 4) the lower eigenstate is symmetric; corresponds to bonching 3) higher eigenstate is repulsion $\frac{|\psi\rangle_+}{|\psi\rangle_-} = \frac{|\psi\rangle_+}{|\psi\rangle_-}$ 5 if the two wells each had an electron, both occupy the lower state, reducing energy by 2/Tl. This is a covalent bond. · Consider the case with E, < E, and assume the coupling factor is small, i.e $\frac{|\mathcal{T}|}{|\mathcal{E}_2 - \mathcal{E}_1|} = \delta < |\mathcal{L}|$ Lo the energy levels become $\lambda = E_1 - (E_2 - E_1)\delta^2 = E_1 - \Delta \leftarrow \Delta is positive$ $\lambda_{+} = E_{2} + (E_{2} - E_{1})\delta^{2} = E_{2} + \Delta$ 4 using feel: 14) = --- $|\Psi\rangle_{+} = \int_{1+\sqrt{2}}^{1} (-\delta |\phi_{1}\rangle + |\phi_{2}\rangle)$ b) if both wells had electrons, energy could be lowered by moving to $E_{1} - \Delta$: ionic bonding. $|\psi\rangle_{+} = \int_{|\psi\rangle_{-}}^{|\psi\rangle_{+}} |\psi\rangle_{-} = E_{1} - \Delta$

Multiparticle systems

The hydrogen atom is effectively a one-particle system because we treat the proton as stationary.
For a true two-positicle system, the state depends on both positions: |Ya,b> = Y([a, !b, t])
Is the distribution of positions is now a joint pdf: P(!a,!b) = 1Y|²d³ cad³ cb
For separable states, Y([a, cb, t]) = Ya([a)Yi(ci))
Is herms of abstract vectors, |Ya,b> = 1Ya>1Yb>, i.e the Cartesian product of 1Ya> and 1Yb>, which is a ket in higher-dimensional space.
IYa,b> is normalized if both 1Ya> and 1Yb> are.

Any two-particle state can be expanded in terms of separable basis vectors: | Va,b > = Z Z Cmn | am > lan > these.

b {lam} is a complete basil for measurements on a, and {lbn} is a complete basil for measurements on b.
b QM postulates that {lam>1bn>} is a complete basil for measurements on the system.

. These principles apply to N powficles, but the number of basis states grows exponentially. · For a separable state, measurements do not interfere. Consider two observables relating to a and 6 respectively: $\langle O_a O_b \rangle = \langle \Psi_b | \langle \Psi_a | O_a O_b | \Psi_a \rangle | \Psi_b \rangle$ $= \langle \Psi_{l} | \hat{O}_{b} | \Psi_{b} \rangle \langle \Psi_{a} | \hat{Q}_{a} | \Psi_{a} \rangle = \langle \alpha \rangle \langle b \rangle$ · For an entangled state, measurement on one subsystem may change the outcome of a measurement on the other. Lo an example is $|Y_{a,b}\rangle = \frac{1}{2}(|a_1\rangle|b_2\rangle + |a_2\rangle|b_1\rangle)$, for which there is maximal uncertainty about which particle is where Ly $P(a \text{ in state } |a_z)$ and $b \text{ in } |b_z\rangle = [((b_1|(a_z))|4)]^2 = 1/2.$ Mowever, operators still only act on their relevant wavefunction dependence, e.g. fa=-it $\nabla_a = -it \left(\frac{\partial}{\partial a} , \frac{\partial}{\partial y_a}, \frac{\partial}{\partial z_a} \right)$ 4 the commutation relations for a single particle are the same, i.e [\$\hat{x}_n\$, \$\hat{p}xa]=[\$\begin{array}{c}n\$, \$Pya]=[\$\frac{2}n\$, \$Paa]=ith

Is however, the (ross terms' commute: $\begin{bmatrix} c_{a} & f_{b} \end{bmatrix} = 0$ $\begin{bmatrix} c_{a} & c_{b} \end{bmatrix} = 0$ Is but measurements on a still affect the outcome or 6. The Hamiltonian for the system is: $A = \frac{\hat{P}_{a}}{2m_{a}} + \frac{\hat{P}_{b}}{2m_{b}} + \hat{V}(c_{a}, c_{b})$

4 \hat{V} includes both the external fields and the interactions 4 if \hat{V} is only a function of separation, the problem simplifies.

Interactions

The total momentum operator is $\hat{p} = \hat{p}_{\alpha} + \hat{p}_{\beta}$ beach component of *R* commutes with any component of the relative position $\hat{\Gamma} = \hat{\Gamma}_a - \hat{\Gamma}_b$. Shence $\hat{\mu}$ commutes with $V(\hat{r})$ La p also commutes with pa?, pb? (Ehenred) theorem Is hence if commutes with H and is thus conserved • The position of the CoM is $R = \frac{ma \Gamma_a + m_b \Gamma_b}{m_a + m_b}$ Sit can be shown that [B, A] = it mathe b hence d(e) = (p) as expected. $dt = M \in M = m_a + m_b$. We may wish to express the Hamitonian as the sum of a CoM pourt and internal part, i.e in terms of R = (X, Y, Z) $x = c_b - c_a = (x, y, z)$ $(\hat{p}_{a})_{x} = -i\hbar \frac{\partial}{\partial x_{a}} = -i\hbar \frac{\partial}{\partial x_{a}} \frac{\partial}{\partial x_{a}} + \frac{\partial}{\partial x_{a}} \frac{\partial}{\partial x_{a}$ $= \frac{m_a}{M} \frac{\partial}{\partial x} - \frac{\partial}{\partial x}$ Ly this gives if corresponding to the CoM and pr associated with the relative motion of a and b $\hat{p}_a = \tilde{m}\hat{p} - \hat{p}r$; $\hat{p}_b = \tilde{m}\hat{p} - \hat{p}r$ Is we can compute $\hat{\beta}_{1}^{2}, \hat{\beta}_{0}^{2}$ to give the overall Hamiltonian

Gom Compute for , for to give the overall Hamiltonian Gen H= In + In + VCry assuming V only func of separation reduced mass. ->between The wavefunction can be transformed to the new coordinate system: (Acom + Ar) Y(R, r) = EY(B, r)
b if V is only a function of separation, the equation separates

-t²/₂ V²_R U(R) = Econ U(R) -> Free particle
(-t²/₂ V² + V(r)) u(r) = Er u(r) -> spherical harmonic etc.

b the overall wavefunction is exp[i(f·R/th)] Yn, 4m. (r)
Translationally it acts as a single compasite free particle.
Vibration as if one particle of mass p is moving in a central V(r)
Rotation same as a rigid rotor at fixed distance from Origin.

N identical particles

The many-particle Schrödinger equation is How You = En You
The N-particle Hamiltonian must be invariant to swapping identical particles. This leads to exchange degeneracies.
B. A. = A(I_1, ..., I_i, I_i, ..., I_N; f_1, ..., f_i, f_i, ..., f_N) = A(I_1, ..., I_i, I_i, ..., I_N; f_1, ..., f_N)
B in fact, identical particles may be defined as those which are exchange-symmetric under all passible observables.
B it is convention to write YN = Y(S_i, S_i) where Si encodes the dynamical variables of particle i.
B identical particles thus obey Â(S_i, S_i) = Â(S_i, S_i) for all Â
Classically, identical particles may still be distinguished from one another. Y(I_1, I_2): e⁻

Is we could track trajectories as they move, and thus find $\Upsilon(\underline{f}_{2},\underline{f}_{1}) : \bullet \longrightarrow \Upsilon(\underline{f}_{2},\underline{f}_{1}) : \bullet \bullet$ Lobut in GM this doesn't work. It is not possible to say which particle has been detected 5 the states are the same: $|\Psi(f_1, f_2)|' = |\Psi(f_2, f_1)|'$ different to saying that $\hat{A}(S_i, S_j) = \hat{A}(S_j, S_i)$

Exchange symmetries

·Given the indistinguishability of states, there are two possible exchange symmetrier. This has a physical meaning. $|\Psi(\mathfrak{L},\mathfrak{L})|^2 = |\Psi(\mathfrak{L},\mathfrak{L})|^2 \implies \Psi(\mathfrak{L},\mathfrak{L}) = \pm \Psi(\mathfrak{L},\mathfrak{L})$ · From the perspective of state vectors, an N-powticle basis set is represented by the Markee product 12,>12,>...1X~» L) each (xi) is a set of quantum numbers for particle is basis set because all possible outcomes are contained. . Eg for a two particle spin system, a possible basil set is: $\{1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2,$ Sout due to indistinguishability, the middle two should be physically identical. We thus construct two new states that show exchange symmetry -> result is same as He eigenstates. $|s\rangle = \frac{1}{2}(|1\rangle|_{2}) + |4\rangle|_{2}) |a\rangle = \frac{1}{2}(|1\rangle|_{2}) - |4\rangle|_{2})$ $\Rightarrow |1_1\rangle |1_2\rangle = \frac{1}{2}(15) + 10), \quad |1_1\rangle |1_2\rangle = \frac{1}{2}(15) - 10)$ Loso we have a new basis { 11>11>, 10>, 10>, 14>, 14>, 14>,

> this basis has the same number of degrees of freedom, even though we eliminated one using identical particles => (s) and (a) correspond to two fundamentally different kinds of pourticle Is the new basis has maximum uncertainty about which particle we find in which state. · Bosons are exchange-symmetric, i.e. $\Psi(f_1, f_2) = \Psi(f_2, f_1)$. Formions are exchange-antisymmetric, i.e. $Y(f_1, f_2) = -Y(f_2, f_1)$. . The symmetrisation postulate states that N identical particles are either exchange-symmetric or exchange-antisymmetric; there are no mixed states and basons/fermions are fundamontally different objects · In the two-powficle spin system (i.e. (1e), (1))(1) and (1)(1) correspond to two bosons in the same state. But no antisymmetric wowefunction permits two particles to be in the same state. · The Pauli Exclusion Principle states that no two iductical Emilons can be in the same state (ie share quantum num bers).

. The spin-statistics theorem relates particle spin to exchange symmetry. Half-integer spin 2=> fermions; integer spin c=> bosons.

Bosons obey Bose-Enstein statistics: (n;) = (F;-M)/hT_1
 Sunbounded j is a particular >> (F;-M)/hT_1
 Formions obey Fermi-Dirac statistics: (n;) = (F;-M)/hT_+1

Gless than unity.

Robert Andrew Martin

Multi-particle exchange

- ·In a general system of N particles, let a given state r of particle i be denoted by 15;>.
- · If all particles are identical, a suitable basis is: 15°> --- 15'>...15²>
 - Ly terms with r=s have an exchange symmetry, but terms for which $r\neq s$ do not: $|\xi^{\circ}\rangle \cdots |\xi^{\circ}\rangle |\xi^{\circ}\rangle \cdots |\xi^{2}\rangle \neq |\xi^{\circ}\rangle \cdots |\xi^{s}\rangle |\xi^{s}\rangle \cdots |\xi^{2}\rangle$
- but these should be indistinguishable, so as with the two-pourtide spin system, we must symmetrise it.
 To do this, we combine all passible permutations then renormalise the resulting vector:

 $\left[\alpha,\ldots,r,\ldots,z\right)^{s} = \sqrt{\frac{1}{N!/tT_{n}M_{n}!}} \sum_{\text{rems}} \left[\frac{\varsigma^{q}}{\varsigma^{m}}\right] \frac{\varsigma^{r}}{\varsigma^{r}}$

exchange symmetric vector counts # permutations with repeated Los this must be done for each a,...,r,..., 2 combination · We can also form antisymmetric states when 9,...,r,... 2 are all different. These correspond to arrangements of termions. $|a,...,r,...,z\rangle^{s} = \int_{N!}^{1} \sum_{rems}^{s} sgn(p) | s^{q} \dots | s^{r} \dots | s^{z} \rangle$

· Both the symmetric and antisymmetric states are needed to form the new basic ·

e.g 3 particles, each with 3 states.
• i.e
$$|\{S^{q}\}| \leq S | \leq C > with q, b, c \in \{1, 2, 3\}$$

• $|\{1,1,1\}$ is symmetric, but $|1,1,2>$ isn't
• Symmetrise: $|\{1,1,2\}^{s} = \frac{1}{\sqrt{3}} [|1,1,2> + |1,2,1> + |2,1,1>]$
• Now $|1,1,2>^{s} = |1,2,1>^{s} = |2,1,1>^{s}$
• There is only one antisymmetric state:
 $|\{1,2,3\}^{s} = \frac{1}{\sqrt{3}!} [|1,2,3> - |1,3,2> + |2,3,1> + ... - |3,2,1>]$

- All N fermions exist in different states, but at sufficiently low temperatures the bosons can all be in the same state La this is called a <u>Base-Einstein condensate</u>. La the state vector is 15'>...15'>...15'>