
 

Relativity
There are several different masses in Newtoniangram
passive gravitational Mo which experiences a

force in a field F Mo 0 0
active gravitational Ma which generates the
field according to Poisson's eq 020 4 Gp
inertial mass me where F MI Ji
Mo MA by NII this is also the case with charge
in electrodynamics
However the equality of Mo and MI is an

experimental fact It means that particles of any
mass accelerate at the same rate in response
to a grow field
weak equivalence principle free falling particles
follow the same path
certainly not true for electromag

The strong equivalence principle states that a uniformly
accelerating frame is indistinguishable from a frame
experiencing gravitation so we can apply SR
constant grow fields are unobservable
inertial frames should be defined w r t freefalling
observers

Special Relativity
Newtonian gravity inconsistent with SR because it

assumes 0 changes instantaneously as p changes
Inertial frames are those for which free particles obey
NI I Q
The principle of relativity States that physics is the
same in every inertial frame this is a special case
of free falling frames

Transforming between frames is
mmmm V

The standard configuration soc soc
S SL Z Z

Event coordinates in S and S are related by a

linear transformation Symmetry restrictions and
x o x vt x o x rt result in
t Att Boc x ACK v t

Newtonian mechanics assumes absolute time t t so
x x ut This Galilean transformation implies
Ot to ta for events A 8 is invariant
Or doe toy Ozz is invariant for simult events

SR replaces absolute time with a different postulate
the invariance of c based on the principle of relativity
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For a photon emitted from the coincidentorigin of 5,5
at t t speed distltime implies
c2f2 od y

2 z2 off 2 x
2

y
2

z
2
0

can be subbed into general linear transform to
derive the Lorentz transform
ct 3 Cct Boc x Nx Bct
where B Yc and 8 I pay 12

we can define the interval invariant under Lorentz
boosts 052 Got 2 0 2

Oy
2 Ozz

this invariance defines Minkowski spacetime
Lorentz boosts can be viewed as 40 rotations

BE l t I so we can define the rapidity 4
such that D tanh Y

y cosh 4 VP sinh y

c stitt In sina.Y.tl 4
invariance of 05 now follows from trig identities

General Lorentz boosts can be expressed in terms of
the standard config
1 Rotate S to align x axis with the relative velocity
2 Lorentz boost resulting in a frame 5 comoving w S
3 Spatially rotate s s
Lorentz boosts are easy whenever axes are aligned

i.tn
Light cones andsimultaneitywww

The sign of 05 allows us to classify event separations
or so timelike anti c
05 0 lightlike
osco spacelike Jaffa spaacodikeEvents outside A's lightcone

cannot affect 1beaffectedby A causality lightcone
timelike x

For timelike intervals we can find an inertial frame
in which the events occur at the same spatial words
for spacelike intervals we can find an inertial frame
in which the events are simultaneous An et

x o x pot oOt
ct 1 0 at_BE A sod
A 8 simultaneous in s but not s s

This implies that simultaneity is not Lorentz invariant

Robert Andrew Martin 2021



However the temporal ordering of events is invariant
as long as the interval is timelike or lightlike i e

cot o cot 0 if Os 30

Length contraction time dilation
mmmr

Consider a rod of proper length to at rest in s
C S S in the standard config so that I Xo ra

an observer in S measures a contracted length
DX 8 Cox vot and Ot o

f Osc Fox log
Consider a clock at rest in s with period To
cot 8 Kot t pOod and Doc O

T 8 To

Pathsinspacetime
The interval between two events along a general path
in spacetime is Os In ds where ds is the
invariant Minkowski line element Is Edt doi dy dz
A particle describes a worldline in which each ds
will be within the infinitesimal light cone
rather than describing the path as local yCH zHD
we parameterise with 7 th xcx yCH HAD

for a massive particle it is convenient to use the

proper time t time measured by ideal dock on particle
in an istantaneous rest frame URA of the particle
doc edy e d z O Is 2 adz
di invariant adz adt doody2 da

de zu dt General frame S

Tv is the Lorentz factor where v is the speed
of the particle as seen in s
the total propertime can be found by integrating

oz fide f It

Thefopplereffectm
consider a signal with period Ot beingemitted from
the origin of S moving away at speed v

In frame S the photons travelled crot and the
source travelled v 8 ot by the next flash The

time between receivedpulses is then
of Ct Ot't v roti

ifI t p
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Velocityadditionm
Consider a particle on worldline local yet 2CA in S
withvelocity use Hat Uy Hat Uz doff In standard

config with S moving at u relative to S
cdt Tv Cdt Psc doc Mdx Bcdt
dy e dy Iz dz

the velocity in S is then

uoi dI YIu.ly Uy dff UI
dt full 4 4

inverse transform swap primes flip signs
reduces to Galilean transformation as race

Alternatively we can think of the particle as being
at rest in s which moves at speed u relative to
S while 5 moves at speed u relative to 5
y n v y n u y't

S Soc S Soc S Sou

x coshYu x sinhVai Ct
write S s boost and use trig identities

x cosh Yuma x sinkYu t Yu at

likewise Ct cosh ahhh et sinhhh Hulk
hence the two coli near boosts are equivalent to
a single boost with speed U c tanh Vu Yui

this can be expanded to give the particlespeed u
in s

Acceleration
mm

a c Effie finer motif Iii.dk IIw w

T ax in

susi II T
l Mep dt or I UE df

Aocan
W3Cl 4 13

Acceleration is not invariant but is absolute all observers

agree on whether or not a particle is accelerating
Consider a particle moving in the oc direction of 5
with speed ul 4 and a properacceleration fat in
it's IRF instantaneous rest
objective is to find worldline in s
consider a frame S

u v 1 du
u du

I de KYI WEY de
sets to be the IRF at time z act fC dI
feel tug dah dad FEI

d

I W
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writing in terms of uectanhy YC If ftilde
the worldline can then be recovered from UC 4
date 2u cosh 4th day urn Csinh Htc

If the acceleration is constant NICE a 4C
d z Cto t Easinhcata
T Xo t Ea cosyage y

defines a

hyperbola
as t 70 Sinh I cosh I ctn
so there is an oblique asymptote

P

Ct Ya too

events to the left of the
areevent horizon cannot be

seen by the particle
C sotherparticles will not appear 0

to cross the event horizon

Manifolds and Coordinates

A ND manifold is a set of objects that locally resemble
RN In GR these objects are events

there exists a one one map 0 from manifold 74
to an open subset of RIN

M Rn

odod gcn
we may need to stitch several euclidean spaces

Curves are parametrically defined xa Ocala at N

more generally an M 0 surface needs M params
T.ca x Y u u um

hypersurface have N I dimensions and can instead be
specified as fact od xn O

Coordinate transformations are passive relabellings
x
a

xia Cod od sc

data Ei 23 dad
there is an NxN transformation matrix at each point P

sis t i ta
b
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J det Ff is the Jacobian If d to the
coordinate transform is invertible

hocalgeometryofriemannianmanifoldsme.to
cat geometry is specified with an invariant distance
In a Riemannian manifold this interval is quadratic in
coordinate differentials dg gaggeddocadxtersinthYY

the metric functions gab are symmetric
to relabelcoordinates use interval invariance
di gabdocadod

gab 201 2
6

Sock Iid
2 10

Intrinsicgeometry is fully specified bymetric functions an

ant on the surface could determine it Extrinsic geometry
can only be appreciated by a higher dimensional obs
the curved surface of a cylinder is intrinsically identical
to RZ dsl aldol'td E ad0 dx doEdited ez
but on a sphere there is no global substitution like above
though it may be locally Euclidean
odty2tz2 a dz Coedoc tydy

Ey2

c ds dad dy2
4cdxtydy

a 2 42192

using plane polars ds2 Idf
a2pe

tp2d02

Thelength along path xacal is fi gasdatadata du
For a diagonalmetric the coordinatesystem is orthogonal

die 9 doc't t gun dun
the volume element is dV doc doin
for general non orthogonal systems dt fgd.sc dot

determinant

Local Cartesian coordinates
mmmm

Notpossible in general to choose coordinates such thatthe line
element is everywhere Euclidean
But at any point P we can choose coordinates sit
gabCD fab 295

p Locally Cartesian

near P gab se Sab t Oke xp
we can show that there are enough d o f

9 ab p Saf requires WWII d o f

gab
2

a
21 god has NZ so NINE leftover

for the derivative condition

29ft Ip o requires N Ntl12 constraint eas

Robert Andrew Martin 2021



f e Fae IIIa IIIo ga t Eca age
20cmbib Lode2of

gives N4Nt 12 d o f so we can meet constraints
however we cannot set all second deriv by a coordinate
transform curvature of spacetime

In pseudo Riemannian manifolds di can be EO

we can always find local coordinates at P such
that gulp hab 292514p

0

Maf diag Il Il Il
the signature of a pseudo Riemannian manifoldis num positive
less num negative entries in 7ab

Vector algebra on manifoldsrum

Scalar fields assign a value to point P indep of coords
Displacement vectors do not generalise to manifolds but
infinitesimal vectors e.g E fields do
the tangentspace Tplm of 74 at point
P is an ND vector spacewhose elements
are local displacement vectors
clearly Tp M is different at diff points

Vectors can be thought of as linear differential operators
I Vad2 9

real components
basis vectors

this fits all the conditions for a vector space
a vectorfield specifies a local vector K E TpiM at
each point P C74

Vectors themselves are invariant only the labels change
For transformation from x x

basis vectors transform via thechain rule II af aZod
p

for u to be invariant the components must transform
oppositely via 2 11pub
vaz.at u Eia's.tt Edp v

The gradient of a scalar field is not a vector
Xa ca Under transform a x

xi a asf
e

x to't Iii
is for a vector

objects that transform like this are dual vectors to vectors
and form the dual vector space Tp M

The contraction Xava of a covector and vector gives a
coordinate independent quantity

xdvia III a Aflac Xiii Suave How
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in general there is no invariant way of associating covectors and
vectors unless we are on a Riemannian manifold with a metric
for orthogonal transforms Ac'Y2xb is an orthogonalmatrix
components of correctorshectors transform the same way JET 1

so for Cartesian coordinates there is no distinction

Tensor fieldsrun

Tensors of type K 4 have K upstairs vectorlike indices
and l downstairs corrector like indices Ta be d
tensors take k covectors and L vectors at P to return
a scalar

the rank of a tensor is htt
tensor transformation

T c a 3 IIa tr
i

en

tensor fields assign a tensor Game type toevery PEM
distinction between the invariant tensor I and its
components Ta be d

Tensors allow us to write equations that work independently

of a coordinate system
Rules for tensor operations
add two tensors of the same type to give a new

tenor of the same type I t E i Tab t Sab

multiply by a real number c'I cTab

for tensors 5 type Cpod and T type Cris the
tensor product I is type Cptr qts
tensor product nonteomanudeive in general
contraction turns type K H K l l l bysetting
an upstairs index downstairs index thensumming

Tensors are symmetric if Sab Sba antisymmetric it Sas Sba
tensors can be decomposed into symmetric andantisymmetric
parts coordinate free Sas L Sastha tf Saf Sba

Scab Scab
extends to many indices of the same type
Scab c is totally symmetric underswapping any indices

Scab c Tei sum over perms of ab c

Cg Scabe f SabotSaab 1 Scab t Scbats boats bae
Scab e is totally antisymmetric changingsignfor oddperms
Scab cz te alternating sum over perms of ab c

e.g Scaboy tf Sabc Saab t Ska Sbac t Scba Scab

We can test if an object is a tensor by checking if it
transforms as a tensor The quotient theorem is a

shortcut if Xas c contracts with any tensor to form
a new tensor then Xab c are thecomponents of a tendo
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Themetric tensormm

Themetric in a pseudo Riemannian manifold transforms as a

type co 4 tensor di gabdsddscb glabdoiads.it
glad 2 a'IIo God

we can think of the metric tensor as mapping two
vectors to a real number i e an inner product

K y gabu9ub

contracting a vector Va with the metric tensor gives
a dual vector coordinate free Va gamb
more generally we can change the type of a tensor
lowering an index by contracting with the metric tensor
e g Tab gac T f or Tak gap96g Tmc

The inversemetric is a type L2 o tensor Denote Cg Yat gab
9

by definition of inverse gabgbe So

grab
a 2x b

2x e Id g
d

we can now get a vector from its dual raising index

using X gabXo
must preserve horizontal order of indiceswhen raising lowering

the mixedcomponents of the metric came from raisingone index
gac gabgbe Sod goa
996 is thus special because it is theonly rank 2 tensorwhose

components are the same in all coordinate systems always ff

The innerproduct can now be written in 3 ways
gasof b Uav a nava
we define the invariant norm as If I l9abV9vM

orthogonal vectors have kik 0
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Tensor Calculus

Covariant derivatives
mm

The gradient of a scalar field is a dual vector 00 with
components 20 2 a

contraction with an infinitesimaldisplacementgives 80 caface

For a tensor field we want a derivative that is also a tensor
not as simple as for scalarfields Consider vector field valid
and the derivative 2

2 ca

e iui ae D
ia s
tensor nottensor

we must therefore construct a derivative that transforms
like a tensor

The covariant derivative of a type CK 4 tensor is a

type LK Ltd tensor Dc T a
b b
bwe construct fav

b Javb t ra v

Mac are the connection coefficients not a tensor chosen
to make 2avbEd xa transform like a tensor

Oa acting on a scalar field is justthe gradient fact 20

Oc is a linear operator satisfies the product rule
we impose that Va commutes with contraction Hence we

can compute Da on a covector field

Va Xml Dake ut t XbOaVb Product but Xovb scalar
palyoub Jakovb Jal b t X Traub

DaXb Jah RabXc

covariant derivatives for general tensor fields can now

be formed with the productrate
To gab Jo Sao trad 89 Fdc6 Sad 0 equivalent to

requiring Va commutes with contraction
On a manifold with a metric we enforce 2 conditions for Da
1 Metric compatibility Pagk O and Dag O

Z Commutativeonscalar fields OaVb0 06 10

theconnection is symmetric in lower indices rabe Taco
O Dogab 2cgab Fleagab Tdc69ad
and cyclic perms

combine to give the Christoffel symbols metricconnection

Tau Igad 26gdo thegab Id96c

Covariant differentiation can be interchanged with raising or
lowering indices DcTab Dc gbdTad gtd Tad

we can thus treat gradients as vectors 090 g 060
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using Jacobi's formula for an invertible matrixMINI21M I Tr th 2cm combined with
D gab 0 gab2cgas 2g gasMea Mac we get
the contraction of the connection

Faa I g 2cg IgI 22dg1

In local Cartesian coordinates gab D fab 2cgatIp O

Christoffel symbols vanish at this point
thus Taub 2am We could have insteadderived an

expr for Ta starting with local Cartesian
this equivalence allows us to rewrite SR field equations
using Oa instead of Tea and the equations will begeneral

The divergence of a vector field is thescalar field Dava
Dav a Lavat rafVb Igt 22A Ig1 va

The curl of a dualvector field is the antisymmetry of the covariant
derivative type 0,4 tensor curl x at Pax6 holla
by symmetry of connection curl x 2am 2bXa
the notion of curl as a vectordoes notgeneralise beyond 30

The Laplacian is the contraction of two covariantderivatives
02Tab Dcp Tab golfPdTab

e.g Covariantderivatives on unit 2 sphere in Asmy

ds dot sine dot gab diag 1 sin20
Tfc Igad 219de t 2cgdo 2dgbe becausegas diagonal

0
a O sum over d 2Too got 269 act 2906 20964

2bSoc 2806 209be 2096C

Only non zero connection component is Ffp Hsin sinecoro
a of n z f 900 2690C 2cg b 2096C

sin2018 c 2bSina S basin20
i T Toyo sin 20205in8 cot0

Daub 2av t Mac c

Dov TovOFv0 sow Fff Vc 2ow tooter

toVO 2 v't t rfc C 2 VQ sinocoso v

P VO 2 V0 t rfc v 2 Vol tcotovo

Grad Day gab by 900204,900204 1204sin20204
Div Java Fav 20N t cote v
Laplacian 024 Papay 2020 4 t 2 sin20204 tcoto2o.nl

fineFolsinozf Inco 5
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Intrinsic derivatives and paralleltransportmmmmwm
The intrinsic derivative is the projection of the covariantderivative onto
the tangent to a curve
Given a vector vacul definedalong a curve odCu e g the
momentum at a pointon the particle's worldline

Ef ftp.va dII.tdfhraijordfnnYhriresi
contract covariant derivative with the tangentvector
definition applies to tensors
intrinsic deriv has same properties as covariant derivative

Ceg linearity Leibniz
In Cartesian a vector is parallel transported if the

µfePonefuaaIoe
constant as we move along a curve yfffffffff

Parallel transport on a general manifold is defined as
0
5 0

generalises to tensors eg PTablow o

given a curve there will be a unique parallel transported vector

given some IG connectsvecto

independent ofparameterivation Sva Soob r c vc at diffpain

scalar products Cand thus lengths are preserved undertransport
dl I H Ion giovani gabvaOff gabwaOff OF

parallel transport is path dependent

Geodesic curvesnm

Geodesics are the generalisations of straight lines to curvedspace
defined as the curve of extremal distance between 2 points
on manifolds with a metricconnection geodesics are the same as

autoparallel curves which parallel transport their tangent vector

the tangent vector to a curve x4u is t doff

curve is timelike if gabt't 0 spacelike it gabtattoo nun
otherwise The character of ta can change along a curve

for a non null curve the length of a tangent vector is dydu
It l Igattat't Lgood'dIudIh I t dydn

The geodesic between points A and B on a manifold can be

found using the Euler Lagrange equations
consider curve scalu parameterised sit A u O 8 u

In as Jo Igaboiaoitt du si a de
du

invarianttoparameterisation F dah

extremise with E L IEA adulFFia
Zafer If a9k id sic t for timelike
2

a I tfgabjob for spacelike

b b CAdultquoi fp2agocx.si
tpzddtugabjcbttpkgafjcb.cc tfgab jib p Laga Ibsie

gab b dafugabjob 22cgab 2agbc x'boic

L 2cgab t 2bGac 2agoc GadFff
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jia rawjob ja sj ja
Geodesic Equation
non null geodesics

can be written explicitly as tensorequation PFI It
there exists an affine parameterisation such that
we as b j O ji at Mbcjob O

In the affine parameterisation 0Th o IE I IHaul const

so the tangent is indeedparallel transported
for null geodesics we cannot extremise since F 0 so we

define them as curves with paralleltransported null tangent vectors
the character of a tangent vector is preserved along a geodesic
since parallel transported

Using the affine param there is an alternative Lagrangianapproach

off o Off o Ittf Rfathot o

data Kgbc tbt

fi

e.g in Rl gab Sab L oity E L I 0

so au 6 straight line
If themanifold has a symmetry so gab independent of someparticular od

do gab O data o to const i.e the cth component
of the tangent vectoris conserved

Minkowski Spacetime

Minkowski spacetime is a 40 pseudo Riemannian manifold with
metric Mmr diagCtl I I 1

the coordinates xM correspond to Cartesian coordinates in an
inertial frame with od et X x x y 3 2

the metric is flat so we can choose global inertial coordinates
so the derivative of the metric vanishes rump O

Lorentz transforms LTD are justcoordinate transforms Butwith our global
coordinates the metric is unchanged Mm 2354123 me

this implies that LTS are linear
x'M Must am with Mmr Npr AI Mpr
AM is a constant corresponding to a shift in origin Transform

is homogeneous if XM O Poincare otherwise

for a Lorentz boost in standard config Amv µ
B

the inverse LT is 1µV n Yum MmMomo
We only consider proper Lorentz transformations samespatial
handedness andexcludes time reversal

general lets have a Atan deta I
we require detA H and N o 31 for a proper Lt
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The innerproduct of coordinate basis vectors gives the components

of the metric 9tea eb gatea g D gab
inverse transform

in Minkowskispace we have elm Ari Ev
the LT does not change the metric so GCem ee't Mmu
and thus the new basis vectors are stillorthonormal

4 velocitymm

4 vectors components transform via M 2 V AM V

spaeeltimellight like characterdetermined by thesign of glue E do
a timelikehull vector is future pointing if v 0 else pastpointing
themetric allows us to associate vectors with duals

µ MpmVV Vo Vo Vi V for i 443
For a particle with worldline MCT the 4 velocity is the

tangent to the worldline um DIE
proper time is an affine parameter because ds aide
4 velocity is future pointing and timelike
gµruMuV 9mVDEYdid 42 a o

the 4 velocity can be written in terms of the 3 velocity

ur cotta Hae Fe.IE daECc.dEtihatdaEtuMddtz c Th abuse of notation

normalisation of 4 velocity gives the relationship between
coordinate and proper time c pmuumuu data d hit

It I HEE Ju i um tu Cc ut

The 4 velocity can be LT'd via u M A Mv u

e l ir
O component gives the relationship between Lorentz factors

Tw men I B frock
i components i I 2,3 give iii pP

c

4 accelerationrun

In an inertial frame a free particle has pi const F const
dam
The O

turn into tensorequation by using Fe metric connection vanishes

in global Cartesian Off o

this implies that free massive particles move on timelikegeodesics
in Minkowski space
equivalenceprinciple means thatthis holds in generalcarvedspacetim

An external nongravitational force will cause the particle to
accelerate Define the 4 acceleration i am OFF

can use ordinary derivative in Cartesian coordinates

9M doff su dat Kcc El guCadet DII E tha

doff II ut a am mi EIut E E't EICa Ela
4 acceleration is orthogonal to 4 velocity

O Idea Ade 9mVUMW tf gourami 2gmvuMf 2g e k
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in IRF up O am CO E are Hence am is a

spacelikevector with sq magnitude MmvaMaV taint

Dynamicsofparticter
For a particle with rest mass m the momentum 4 vector is

defined by pm mum

ofa uh a Ifl g p p my invariant

pmhas components pm Hume F where F'Emma is
the relativistic 30momentum

this form of p means that momentum isconserved in all frames
and I DI

Dt

The O component of 4 momentum is the energy po Zuma Etc
can show that the rate of work I I Fetchme4

E Yuma

we can thus write pM E P the magnitude of which
gives the energy momentum invariant E I pro me 4

for a free particle FIE O

for isolatedparticles and shortranged interactions Eide PM const

The 4 momentum can bechanged by the 4 force
f M 0pm

Fc man

orthogonal to 4momentum 4 velocity
can relate to 3 force fM Ida ruddy E F SulFEI F

photons must conserve momentum From E p invariance E lPlc
gulp f 0 for photon so 4 momentum is a futurepointing null vector
cannot use IT as a parameter because for a nullpath ds dE o

but we can choose some param X such that pm DIEM

pm Ect Fm ECoat HatHat DII EDIE
thus choose DX Edt IE with pmbeing a tangentvector
to the photon's worldline xM4
DAYon O freemassless particlesmove on null geodesic in
Minkowski space with an affine parameter 7 Iet

Compton scatteringm

Consider the scattering of a photon from an electron in the rest frame
of the electron

sin 3in pm
before Trae After to

pm 9M EM
x x

Initially pM HE 1,1 0,0 qm mall o o o
Conserve 4 momentum 9M pm QM FM
IET If I t IET III t2gCp q 2 gCrip Zflat E
but Ioff lofI me'd rand IET Ifl O

I It 1hr1meal I cosof
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Local reference frame for a general observerummm
IFor a general observer on worldline 0 eoc4

um DEE am ftp.tfe.coAt propertime T coordinate basis vectors of the 0C

I RF e put pro 3 form an orthonormal basis

y E cfo t by construction

Ei Ctl i I 2,3 span the instantaneous restspace
this basis corresponds to the moving observer's local Iabframe

thespatial vectors are only determined up to a spatial rotation However

for a nonaccelerated observer moving on a geodesic we canjust
11 transport theinitial frame

Electromagnetism

Maxwell's equations in an inertial frame

E E E Ex E I
o t

J 8 0 0 8 Mo I t 254

The Lorentz force law is F q E tu x8
linear in E E so we can try to write fµ qFµvW
where Fm is the type 0,21 Maxwell fieldstrength tensor
Fmr and Fm are antisymmetric so that fu is

orthogonal to 4 velocity
findcomponents of Fmv bymatching components to fm HEY E

fµ qFmrur grin E E Exp
fo qFor ur g tu En Ic
98inFor Pir gyuEIihr le c For EI
fi q Fio not q Fijui qruf.IE tCu xEsi

qE su openFiji's gruEi q8uCut
i

F E3 Fi P E E cyclicsign

ra E Eg Effy Eminent pins
Eye O i i O signs
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we now know how Maxwell's egs transform relativistically
LT IN AM sir F M AMMa FM

r tE atc i I
these are consistent with the fields resulting from lengthcontract

current elements and Ampere's law

coordinatefreemaxwdlequationsm.co
insider a current distribution formed by a chargedensity

p moving with 3 velocity v O o in S i e p u o o

Let S be the rest frame of the charges standard config with
chargedensity po no current in 5
length contracted in 5 but charge same p TvPo
this is consistent with a current 4 rector jM Ccp E

we want to relate the fieldstrength tensor to the current
4 vector linear in spacetime derivatives We try an equation
of the form Dpr FM Kjv
in global inertial coords antisymmetry of FM implies charge
continuity 2mFMEKjv 2v2µFMV o k2vjv divergence

to ELI 2rI kjo E E Kip
giving one of Maxwell's equations where K No

F i derives the awl terms in 8 8 NOTHIFI
Source free Maxwell eqs require a different tensor eq

BxE III B E o 4 equations
we need a tensor eq that involves thecovariantderiv of
field strength and 4 independent components
consider 0cmFrp 0 In globalinertial coordinates
2MFrp t 2 Fpm t2 Fmv O

the 4 choices of indices are 141,2 CO43 10,43 Ct 2B
each of which gives one of the equation

Maxwell's equations are thenjustthe Cartesian components of the
tensorequations pµfM µojv Pentup O

equivalence principle impliesthatthis holds in local inertial coordinates
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Spacetime Curvature
Generalspacetime must be a pseudo Riemannian manifold
because by the equivalence principle it should reduce to
Minkowski spacetime where din n mu DX Mdr
Gravity mest be spacetime curvature otherwise we couldextend
localinertial coordinates to all spacetime and therewouldbe no
observable effects
For a general manifold we can find a free falling non rotating
frame Cie local inertial coordinates such that

gmv P hmu and Gpgmv Ip O
however as we moveaway from P spacetime looks less

like Minkowski spacetime

9mV Marut 9f p
XP HPD Xo MPD t

We can construct Fermi normal coordinates everywhere
on the path of a free falling observer timelike geodesic
consider an observer carrying a 11 transported c

owrt.horgamf.me frame EEN43 along their
e o

any point Q near C can be connected to p
a point P on c by a spacelike geodesic

H

orthogonal to Eo at P

we assign 4 coordinates XM Q1 let Shi where hi are
direction cosines of thegeodesic at P

Newtonian free fallmmmm

For weak fields andslow particles the geodesic equation
reduces to Newtonian freefall
Weak field globalcoordinates Minkowski coordinates i e

9mV Mmr t hmu Ihmu1 cc 7
assume metric is stationary ie 29m12co o

For slow moving particles Idea Kc HIIIccDIE
we thus don't care about it 2,3 terms in thegeodesicequation

dsfftr.mildate o

Connection coefficients
c vanish due to stationary

Tomo IgM two 2 vgoo metric

L E gri2hoo ri Iz ymi2 hoo stionrdherm

i e fooo ro too 212hoo
Geodesic equation then gives

da't ro date const
DILI I ahgoziCI.at DIII E i

This recovers the Newtonian result DELIA 3 i if g or I 20

goodapprox as long as I E l cc d
this holds in most situations except eg blackhole eventhorizons
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Intrinsiccurvatureofamanifoldime
A manifold is flat if there are global Cartesians Xa such that
die E x12 t t En LdXM Ea II
The Riemann Curvature Tensor RCT describes the intrinsic

curvature of a manifold independent of coordinates

by construction the covariant derivative commutes on scalar
fields i e Dato0 06 0 Not true on tensor fields

e.g for a dual vector field
Dag v 2a look fadoDave MacPwd

2a2k r 2Nd fadeand Ma Have reared antisymmet

Caarode vd Mactea re
Paavo Opava RatedVd

the RCT is a type a 3 tensor

rank dark tar rear Rf Mae
because the RCT involves derivatives of the connection it is
related to 2nd derivatives of the metric
flat manifolds Rated 0

RCT is antisymmetric in the first two indices
Rabad Rfaced

and has cyclic symmetry Rated t Reaod t Rbead O

Further symmetries can be seen by considering Rated 9deRake
canshow symmetry in local Cartesians mustthenbe true generally

abcd p L Ladd9bet 262cgad 2a2cgbd 22dgac p

RCT is thus antisymmetric in the last two indices Rafah Rabdo
and is symmetric swapping 1stand 2ndpairs of indices

ice Rabed Rodab

In 10 the Rct vanishes because there is no nonzero tenor with
one index that is antisymmetric Ci e ai ai ai ol
all lines are flat Ceren if embedding may be carved

In 20 RCThas onecomponent firsttwo indices mustbe diff Comd
there are only 2 available while lasttwo must first two
In 30 Rct has 6 indep components
first and lastpairs have 3C2 choices 12 13 23

Rct is like a 3 3 matrix so 6 indeep components

no furtherconstraints from cyclicsymmetry
In 40 RCT has 20 components

4C2 6 choices for firstlast pairs
6 5 4 t ti 21 components consistent with 6 6 matrix
BUT cyclic symmetry introduces one constraint
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Bianchi identity and the Ricci tensorhmmmm

The Bianchi identity is a cyclic relation involving the net
QR bede t k Roade t I Rabde o

can be shown in Cartesian true generally
OaRoade p Ldado read 22rem p cyclicperms add

up to zero
lower rank tensors can be formed from the RCT

by contraction antisymmetry in first and last pain means we
can only contract across one index fromeach pair

The Ricci tensor is the contraction Rab ERcab
from RCT cyclic symmetry the Ricci tensor is symmetric
Rba Rcab Raab Rbae Rab Rab

The Ricci tensor can be contracted to form the Ricciscalar
R gabRab

on a flat manifold Rabih O Rab O R O

BUT converse not always true i e Rab 0 Rabad 0

Contracting the Bianchi identity over 6 e gives
OaRed PcRad t TbReaab O

contractagain over a d togive the contracted Bianchi identity
Rnb gabR O

hence define the symmetric and divergence free
Einstein tensor Gab Rab 19am
relatedto cons Energy momentum

Curvature and parallel transportmurmur

On a manifold with intrinsic curvature 11 transport is
pathdependent Li e final vectordepends on path fecal
Consider an infinitesimal loop C parameterised by vCup

u with a vector Elul being H transported µ µµpA transport Ian r c doth've c
seen

starting from P and 11 transporting gives
acut vacup hip rgedden v du

Taylor expand Mac and v4u about P
Ova value vacup Jaffe rye redc putup fooddocb

god b ca O oddxd xddub so can antisymmetric

Ova Rb.depvdpfxCbdxT

i e Dy curvature x x x area

Shows that he does not change on 11 transport if manifold is flat

curvature and geodesicdeviationmmmm

Curvature can cause two initially parallel geodesics to deviate
Consider 2 geodesics in MNwith affine param u RN a

separation vector Glu is linear in a
salad Iac nnot true on surface of a sphere

For 2 general geodesics C E the connecting M 1

vector is u Each ocala
Kalu
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considerhow 5 varies with u Subtract geodesic equations

ctfu Tg Eb Ic Ficjob o

Taylor expand FaulkModa Hargisd ETH DIETdata

didnt 2 rfc job Largejob idGd o

this can be written as the Henson equation of geodesicdeviation

talk Rdbcajobx'Sd o

For a flat manifold Raka o Ful an did 0 so

indeed varies linearly with u
In spacetime the geodesic deviation equationdescribes the relative
acceleration of neighbouring free falling particles dueto tidal effects

parameter is now I na Joa is the 4 velocity

Eel't Eun 5
Spiv RinaBruhl is the tidal tensor symmetric

In Newtonian gravity DIE's C III cut Eifel Efi eat
dag

i

att
IE
oxide 5J

in freespace 82OI o so 22J OI is symmetric and
trace free volume of a set of falling particles is preserved
in the weak field slow speed limit Newtonian geodesicdeviation

Einstein field Equations
Poisson's eq does not apply generally because observersdisagree
on the density PCT length contraction We must generalise
Consider static dust non interacting point masses
in a rest frame S the number density is no so the
energy density is pod no ma
in a frame S where dust is moving uniformly at speed up
nun density is kno due to length contraction so energy
density is pi Juno Yuma tripod
energy density is not a Lorentz scalar

The energy density transforms like the 00 component of the

type a o energy momentum tensor TM p umar
Lorentz
scalar

Tio coruno maruti c x 3 momentum density
or aTio tunomd Ii energy flux
Ti't 8h2mn Ei htt flux of i component of 3 momentum

in j direction
TN is symmetric required for cons angular momentum

All sources of energy1momentum must be included in TM
an ideal fluid is isotropic in its IRF so Tio O and
Ti's fi's for isotropy Valid ifmean freepath cc scale of variations

in the IRF TM diag pod po popo Po is the pressure
in tensor form TM pot UMW pogm
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can find quantities e.g energy density by reading off the
tensor components
for a non relativistic fluid polepod and TM pound dust

Conservation of energy 1momentum DmTM 0 In local
inertial coordinates consider time and space separately
257 c E III o i e 37Cenergydensity 8 Klux o

TITLE t 05 O i e Zylnom density t B Caux 0

Fieldequations
0201 4 itGp and the weakfield limit of thegeodesicequation
is goo It 20 02goo 8M EtfToo
Based on this we might look for a tensor such that
kµv 8 64 Tmv
must be symmetric and type to 2
should relate to spacetime curvature
OmTM o DMKmv o

the Einstein tensor is a good candidate because
6mV Rmv Egmu R satisfies Om6µV O

The Einstein field equations EFES are then

6µV Rmv gm R
8 64 Tmr

set of 10 coupled PDEs for the metric functions
contractwith GM Rm Etf Tour Igm Tmr

We can show that the EF Es recover Poisson's eq
for a non relativistic fluid 9mV hmu thru
Tmr T p UnUu T g m p Umar pod

Too I got IPod
Roo 4 64pod

Rnp x 2µFMvp t 2nFMmp keeping firstorder hmu
Rao I i 2 too

but from the Newtonian limit of the geodesicequation
Foo x 12h54 with hook 2

Roo 4 Po t E OI 8201 41168 orzo

Cosmologicalconstante
we can add an additional term to the EFE

Rmr I 9mV Rt Agm v 874Tm
N is the cosmological constant
Lovelock's theorem shows that this is the only other
tensor that satisfies the EFE in 40spacetime
can rewrite as Rmv III Tnr Egmut Agm

In the weak field limit with small N Poisson's equation
becomes 82OI 4 itGp Nd
for a point mass M at the origin FCI Effs tNE I
linear repulsion means that universe's expansion is accelerating
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We can think of A as arising from a universal negative
pressure in the vacuum Vac

for an ideal fluid with po pod Tmr pogmv fodg.mu

replace Tmr That in the EFE and compare
terms Praed Nc4 8 G

Hypothesis that this vacuum pressure arises from the
zero point energy of quantum fields
considering oscillation modes in a box
Praed Eep f t talk d3k

integrate up to the Planck length
Praed n ti c Lp 4 A vac 4070m 2
vacuum catastrophe h lo t m 2 experimentally so we
are 120 orders of magnitude off

Schwarzschild Solution

Describes spacetime in a vacuum outside a sphericallysymmetric

non rotating mass distribution
In GR we should think of symmetries passively Spacetime

possesses a symmetry if g mix has the samefunctionalforin
as gmu x under a coordinate transformation XM x'm

write the general lineelement with space and time
separated implicit sum over spatial indices i 4,43
di gooLt E dt t 2goilt E dtdxit2gi.lt E docidsd
under a spatial rotation x Qx for an orthogonal
matrix 0 For spherical symmetry ds musthave the
same functional dependence on x so

gooft E goo Ct QE
goiCtEldsci go Ct e E Oi doc's

gig Lt E dxidsis gig Ct e E 0inO'sdockdod
this constrains the form of the metric

gooCt E Act r

goiCt Ids i Oct r E DE

gigLt E duidx's ut r E doit 0144edgeadherentin
Require two additional symmetries infinite wire

isstationarybut1 Stationary symmetry under time translation not static
2 Static stationary and symmetric under t s t goi o
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Rewrite in spherical coordinates redefine A Eco

Is Act rldt 28ctirldtdr C.lt Ndr Oct r dr
use new radial coord F F 2 0Ct n

d5 Act Flat 2 Blt F a tdr Cct Hdr Fdr
introduce I fair and remove dtdt by completing
the square using an integrating factor

Result is a diagonal form for the isotropic lineelement
ds2 Act r dt2 Ect r dr Rdr

drop t dependence if static

solve for A r Ocr using the Efes which reduce to
Rmv 0 in a vacuum

solving 00Es gives Acr x It E Nr HE
constants x K determined by comparison with the
weak field limit die It 2 DEH t

this gives the Schwarzschild solution

d5 act F dt2 I If dr Pdr me off

Solutiononly valid in vacuum leg outside the star
There is a coordinate singularity at ram butcurvature
is regular
As r as metric Minkowski Asymptotically flat
Birkhoff's theorem States that any spherically symmetric Sol
of EFE is the Schwarzschild so I so must be static

Geodesics in Schwarzchild spacetimemurmur

L gm diddid all 2E E I 2Mt r2 RE resin200
from Euler Lagrange FEE sinecoso02 0 One

solution is G 172 so we can considerplanarmotion
242t const I If to k
0426 const rig h angularmomentum conserved

for r easier to use the constraint L Idfxp const

I If c t l ZF r z pop do massive
massless

The constant K arose from timesymmetry so is relatedto energy
for an observer at rest 4 velocity is UM Afon where A
determined by normalisation E grumman A Ct Ef 2

energy of particle with 4 momentum pm as measured by obs

with 4 velocity um is F glue f gooApo
for a massive particle F Kmel l Ef so humor is the

energy measured by a stationary obs as r is Weed K I

for a massless particle E KACI Ef
2
Need K 30

GRthus introduces a correction to the classical orbit
equation Liz EY Era l 2E talk 2 D

iz deDI
VereCr Mithra 1 If minima

to
centrifugal barrier is reversed

very strong dependence on h
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This modified UeffCr leads to different properties compared
to Newtonian gravity
particles can spiral in because no centrifugal barrier
for h X fr pic there are 2 circular orbits rt Cstable
r unstable The innermoststable circular orbit ISO is

at r 6pm

all circular orbits for r 4M are bound

for massless particles to so VeffCrl FILI ZF ie
no GI term Vee

unstable
it Lik HIM incoming photons circular

12 orbit
are captured 54mi

else a photonwill deflectwith pericentre
µ

given by the intersection of E Idk
with Neff r

daro r Eh r2 Ct Ef
compare with Newtonian to get b ahh the impactparameter

Theenergy of a photon measured by a stationary observer
changes along thephotonpath leading to gravitational redshift
Photon energy is F gCf a kill 7ft

l VA EA I 2Mtray It 2 as
h z V Ie I 2µm atra 2mi

event horizon

Orbits
The shape of an orbit under the Schwarzschild metric

GM1h2 massive
ddIf th 3MW

o massless
Newtonian boundorbits described by tr ohhh lte cos01 Ote I

with M at the focus and a h
mc I er

In the GR case define dimensionless UC01 Eunuch
Idf t U It a U

x 392hL Iff small in the weak field limit
expand UCO in small x Ul01 I tecos0 t x U10 t old
sub into the orbitequation to find
V ol Itter telosin toecos20

Even terms firstorder in x are small so can be ignored except
e sin because this can accumulate
uld Eff ltecosotexosinoni EY.CI te cos OCI xD
hence the orbit is not closed 0 must increase by 7
for r to repeat so the orbit precesses by angle
0 0 2ITC Ex 1 Zita per revolution
00 6 GM all eye largest for small orbits with high
eccentricity GR successfully predicts the precession of
Mercury
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Bendinglight
Theorbit of massless particles is described by doff tu Eman

In Minkowskispacetime M 0 so thesolution is a straight line
with impactparam b ul01 to sin
Define dimensionless UCO bacon

DEL tu pur
P If small in the weak field limit
expand UCO in small P Ul01 sind t pUlol to CPD
sub into the orbit e nation to find
U 4 Casino tacos 0 t It cos20
8 C O it U sin0

u g Sind t 31M cosof t Il It cos20262

To find thedeflection angle u 20 0 00
46Mof x Eb

this is gravitational lensing which was experimentally
verified by Eddington

double the deflection of a massive particle under Newtonian

theory because light is affected by both spaceltimeparts of
the metric

Black Holes

The Schwarzschild metric is singular when r o or r 2M
rs 2M 247 is the Schwarzschild radius
r o is a physical singularity can be seen by considering
the Kretschmann scalar RµvpoRMMx ME
rs is just a coordinate singularity curvature is finite

The Schwarzschild radius partitions space into two regions
Exterior r r Interior rers

E I
in the interior a particle cannet stay fixed at Cr 0,0
because its worldline is timelike
at r rs the time and radialcords appeartoswitch roles

Causalstructurenearblackhoter
Radial null geodesicssatisfy 0 ds ill If dt Ct ZF dr

dearth I Iff
t at r 2psIn IEn Y t C outgoing in interior

ct r 2mWEn Il C incoming in exterior
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An incoming outgoing
As r rs fromthe outside f n 7

it appears to take infinite time he
7

to mine toorisinate

TT
v

r 2pr Sr

However these phenomena only appear in coordinate time With
an affine param X the Lagrangian gives data KU Hr

day I Kc r Ic ka t const

so an incoming photon doesreach r rs in finite X
as the photon passes through rs data 0 so the lightcones reorien

The causal future of particles in the exterior includes a
region in the interior where the lightcone is oriented towards
r o unavoidable thatthe particle falls to the
singularity This is a BLACK HOLE

r r thus defines the event horizon
within theevent horizon particles cannot escape r as

Outgoing geodesics in the exterior can be linked to an
interior region in theircausal past where the lightcone
was oriented away from r o WHITE HOLE

particles are expelled to n rs from the interior
do not exist physically no mechanism for formation

Massive infalling particles2mm

Setting h o for a massive particle gives re GF feck D
dae r off Same as Newtonian but uses
propertime

it takes theparticlefinite proper time to reach r 2m from o

we can consider the path in coordinate time
Thr cat En l Ef
at tot 2n froriin doc an

diverges as r 2µ

an.si
n i ieEe

theratiae
I

g
r 2pr r

Eddingtonfinkelsteincoordinater
We can change coordinates to avoid the rim singularity for
infalling particles at incoming outgoing

of r 2M In Em l l t const r n

et att 2MInter Il
ingoing null geodesics have at r const

outgoing null geodesics are still singular
Ct rt 4MIn1Er I l t const rep r

CH r Q 01 are ingoing Eddington Finkelstein IEA coordinates
they do not cover the causal past of the exterior white hole
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Use cdt cdt t Ep It dr to find new lineelement
di all HfIdf 4Iredtdr It27 dr Fdr

metric still Minkowski as r as

es is now spacelike everywhere because there is no

sign change at r 2µ
we could instead construct outgoing EF coordinates which remove
thesingularity for outgoing geodesics
I EF and OEF coordinates can be combined to form KruskalSzekeres
coordinates which are nonsingular everywhere

Formation of black holes
www

By Birkhoff's theorem theexterior of a star
is described by the Schwarzschild solution Ct n EF cards

think of the star's edge as a massive

infalling particle in Schwarzschild spacetime
when the edge passes F rs the star has

rs r
become a blackhole

As a simple model we can consider the collapse of a largedust
cloud from the perspective of a distant stationary observer
no pressure so dust falls on geodesics
consider light rays emitted by edge of cloud at Cotte re
and received at Lct r Kr using IEF coords
we are interested in the radius of thecloud as proper time progresses

In LEF coords cti ra 4M In1Ef Il ct e re 4µ InIIF l

as he72ps this term dominates

In th t const for a distantobserver
C En ne cth tconst const 4MIn IF I I

the edge of the cloud isobserved to approach r 2ps exponentially

he En 2mL It a e Ctrl4M

cloud redshifted VI date DIEDIE ctfu I µ
e 4th
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Cosmology

Cosmogy aims to describe the universe as a whole using GR
The cosmicmicrowave background CMO shows that theuniverse is
aboutthe same in all directions at a given time isotropic

If we adopt the Copernicanprinciple that we aren't privileged
observers then there exists a class of fundamental observers who
all see theuniverse as isotropic and agree on what they see at

a given proper time universe is homogeneous

The fundamental observers cenmeve with matter in the universe
else there would be some wee not isotropic and likewise
must be free falling else free breaks isotropy
The worldliness of fundamental observers mustbe

forthogonal to hypersurfaces of constant density else tz

ylocal measurements in the IRFs would reveal
c

a spatial gradient breaking isotropy
we adopt synchronous coordinates

each fundamental obs has fixed spatial coordinates sci
homogeneous surfaces are labelled by their proper time which is

the same for every observer cosmic time
The synchronous lineelement is ds ddt t 9iCt E dscidx's i

satisfies ur door um DIDISon garumde 9oi o
can show that it indeedsatisfies the geodesic equation timelike

Friedmann Robertson Walker Metricwww

The intrinsic geometry of t const hypersurfaces depends
solely on spatial components of the metric ds gift E xix's
For this to be homogeneous for all t eachcomponent of gig must

evolve the same way in time so we can factor out E dependence

gig t.IS REH 8j E
RCA is a physical scaling factor
Nj is a 30metric tensor of type 6,4

Isotropy requires sphericalsymmetry so we can use the spatial part
of the Schwarzschild solution do 8ijdscidsc's Bcr r t fold
We further constrain thegeometry by ensuring homogeneity of the
30 metric connection Riemann tensor Ricci tensor Ricci scalar
Ricci scalar cannot depend on r so set to constant R 6K
But R FLI dartF so integrate to get E EtcI Kra
othercurvature invariants like Ri R I mustalso be
independent of position

The 30 line element becomes dot i docidx's c
trade

The fRW metric is then

ds ddt RCH d
rz trade

Homogeneous isotropic 30 space is maximallysymmetric posseses the

same number of continuous symmetries as 30 Euclidean space
3 rot t 3 translate 6
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Bianchi identity K const

in maximally symmetric spaces the RCT can bewritten as
RabeD K Cracked toedtbc

the 30 Ricci tensor is Rik 3 Rijn 2k2gr so

R 2kt's Bk 6k so this is the same K as in

the fRWmetric

lntrinsicgeometryof30spaoes.tl
ifferent cases depending on the value of K
K O def dr ridR Euclidean space in polars
for K 0 reparameterise r In sin fr x Skc x

do 2 1 2 t SEC Ddr
this is the lineelement of a 3sphere embedded in R
the 30space corresponding to the surface of this 3sphere
has finite volume a closedspace
Side d3x fo t sayX DX dr ZITI

For k LO reparameterise r Ta Sinh X Sa X
corresponds to a hyperboloid embedded in Minkowski space
space is open with infinite volume

The FAW metric is thus ds idf RET dx tailed dry

Sr x
In sin RkX Kso closed

X K o flat

trysinh rk X k Lo open

Anexpandinguniverse.TK
properdistance between two fundamental cobs at 21 0 X oX

is UH RCHOX
The fractional rate of change in proper length is the Hubbleparameter

HCH t dat t dateR
If HCA 0 the universe isexpanding In ouruniverse Ho 20km5Mpi
This expansion results in cosmological redshift
consider a radial nailgeodesic X o XnOrOn

xMH HH HH Or Or
photon 4momentum is pr CE X o o

energy measured by obs travellingwith un for
is E pm ur p cap
the Lagrangian is f c t RX giving p a

relate p to p using the null vector condition
0 a 012 Ryp't E dp a Rp n th

the redshift is thus the ratio of scalefactors
It z Wye FEyer Rctr Ncte

cosmologicalfieldequationsmmmlEFE.hn IIIHmv Ismail Agm
Isotropy TM is that of an ideal fluid Tom pi Aa umanpgm
Homogeneity p p only functions of t and fluid must be at
rest w r t fundamental obs so UM 8Mo
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From the FRWmetric we can compute the Riccitensor 1scalar
dsk ddt RTHK docdoc's

Roo 3 Hr
Rig IzC n'R 2h t 2K a Vij

Compare with the result from Ef Es
T gmvTM gm pi Az uMu pgm pi 3ps
Roo In 4154ft3 tJAE Friedmann

Rig
E t p in

equations
R R 3

Conservation of energy 0mTM o f t 3Rd pt Ea O

in dust p o it 3Enp o p x R 3 intuitive

if pto there is PV work being done so energy falls faster
e g for radiation p MY p t 4Erp 0 p R 4

Cosmologicalmodetm
Given the Friedmann eq H'that 8 p tf Ai the evolution
of the universe can be determined if we specify P H n and
an equation of state linking p and p
The criticaldensity is defined by Parit o If 1 0

P pair K 0 closed

p pcrit K 0 flat
p spirit k Lo open

It 1 0 and for ordinarymatter with P O p 30
the 1st Friedmann equation gives a co nach

in an expanding universe this implies R O ya
at some finitetime in thepast the Big Bang alto

the age of the universe is bounded by to'tR age
age L HOYµto 440 146 yr

A small so YHo is a good approx of age
In a flat or open universe KEO with A D H2 0 so

the universe expands forever

special case of K 0 p o is an Einstein desitteruniverse
p xp 3 H'an 3 R x ft

In a closed universe K o with 1 0 expansion eventually
stops at some Rmax after which the universe contracts to
a singularity big crunch H 0 when Iaa IpCRma
If A is large enough expansion accelerates Cci o
in the K 0 case expansion lasts forever and
H the Rx exp Fft

this is de sitter spacetime maximally symmetric
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