Vectors

• Combining a vector with its additive inverse gives the zero vector, with length 0 and undefined direction.
• A scalar product projects one vector onto another.
• We can resolve \(\vec{a} \) into \(\parallel \) and \(\perp \) vectors w.r.t. some \(\hat{a} \)
 \[\vec{a} = \vec{a}_{\parallel} - (\vec{a} \cdot \hat{a}) \hat{a} \]
• Distributive property of dot product can be proved diagrammatically.
• Derive cosine rule with \(|\vec{a}| - |\vec{a} + \vec{k}| \Rightarrow |\vec{a}|^2 = (\vec{a} + \vec{k}) \cdot (\vec{a} + \vec{k}) \).

Vector product

• \(\vec{a} \times \vec{k} = |\vec{a}| |\vec{k}| \sin \theta \hat{n} \left\langle \text{only unique in 3D.} \right\rangle
• \(\vec{a} \times \vec{k} = -\vec{k} \times \vec{a} \) (anticommutative)
• \(\vec{a} \times \vec{k} = 0 \Rightarrow \vec{a} \parallel \vec{k} \) OR \(\vec{a} \) or \(\vec{k} = 0 \).
• \(|\vec{a} \times \vec{k}| \) is the area of a parallelogram.
• Non-associative; i.e., \(\vec{a} \times (\vec{k} \times \vec{c}) \neq (\vec{a} \times \vec{k}) \times \vec{c} \).

Vector area

• Vector area \(\mathcal{S} \) of a finite plane surface is defined such that \(|\mathcal{S}| = \text{area} \), with \(\mathcal{S} \) pointing normal to surface.
• The area of a projection (e.g., onto xy-plane) is \(\mathcal{S} \cdot \hat{z} \).
• We can define a total vector area for a composite surface as the sum of vector area elements, \(\mathcal{S} = \sum \mathcal{S} \)
 \(\Rightarrow \sum \mathcal{S} = 0 \) for a closed surface = 0.

Triple products

• Scalar triple product: \(\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a \cdot (b \times c) \)
 \(\left\langle \text{invariant under cyclic permutation, i.e., } a \cdot (b \times c) = c \cdot (a \times b) = b \cdot (c \times a) \right\rangle \)
 \(\left\langle \text{gives the volume of a parallelepiped} \right\rangle \)
If scalar triple product is zero, vectors are coplanar.

The vector triple product is $a \times (b \times c)$, which can be evaluated with the BAC-CAB rule:

$$a \times (b \times c) = b (a \cdot c) - c (a \cdot b),$$

$\Rightarrow a \times (b \times c)$ lies in the plane of b and c.

Lines and planes

A line is parameterised by λ: $\mathbf{r} = a + \lambda \mathbf{t}$

Because $(\mathbf{r} - a) \parallel \mathbf{t}$, we can also write: $\mathbf{r} \times \mathbf{t} = a \times \mathbf{t}$

For a plane: $\mathbf{r} = a + \lambda \mathbf{f} + \mu \mathbf{g}$

$\Rightarrow \mathbf{r} \cdot \mathbf{n} = a \cdot \mathbf{n} = d$

\Rightarrow the shortest distance to the origin is $|d|$.

Orthogonal basis

In 3D, any 3 non-coplanar vectors constitute a basis.
- Basis spans the space, i.e. $\mathbf{r} = \lambda \mathbf{a} + \mu \mathbf{b} + \nu \mathbf{c}$ where the components $\{ \lambda, \mu, \nu \}$ are unique.
- Basis vectors will have linear independence.

Components can be extracted using the reciprocal basis

Cyclic order preserved. $\begin{Bmatrix} \mathbf{A} = \frac{\mathbf{b} \times \mathbf{c}}{[a,b,c]} \\ \mathbf{B} = \frac{\mathbf{c} \times \mathbf{a}}{[a,b,c]} \\ \mathbf{C} = \frac{\mathbf{a} \times \mathbf{b}}{[a,b,c]} \end{Bmatrix}$

\Rightarrow the component is just dot product of \mathbf{r} with the appropriate reciprocal basis vector:

$$\mathbf{\lambda} = \mathbf{A} \cdot \mathbf{r} \quad \mathbf{\mu} = \mathbf{B} \cdot \mathbf{r} \quad \mathbf{\nu} = \mathbf{C} \cdot \mathbf{r}$$

A basis is orthonormal if all basis vectors are \mathbf{b} and have unit length.

Right-handed if $[a,b,c] > 0$.

Direction cosines are cosines of angles between \mathbf{a} and coordinate ones, i.e. $a = |a| (\cos \theta_x, \cos \theta_y, \cos \theta_z)$ in Cartesian.
In Cartesian, $\mathbf{a} \cdot \mathbf{b}$ is invariant under rotation.

$$\mathbf{a} \times \mathbf{b} = \left| \begin{array}{ccc}
1 & i & j \\
j & a_y & a_z \\
k & a_z & a_x
\end{array} \right|$$

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \left| \begin{array}{ccc}
1 & a_y & a_z \\
\mathbf{b} \times \mathbf{c} & a_x \\
\mathbf{c} \times \mathbf{a} & a_y
\end{array} \right| = \text{i.e. transformed volume of a unit cube.}$$

Polar coordinates

- Point specified by (r, ϕ)
 $$x = r \cos \phi \quad y = r \sin \phi$$
 $$r = \sqrt{x^2 + y^2} \quad \phi = \tan^{-1} \left(\frac{y}{x} \right).$$

- Circle described by $r = a$

- Straight line at angle α to y-axis with shortest dist tol:
 $$r \cos (\phi - \alpha) = a.$$

- We can use the following orthonormal basis:
 $$\hat{e} = \cos \phi \hat{i} + \sin \phi \hat{j}$$
 $$\hat{\phi} = -\sin \phi \hat{i} + \cos \phi \hat{j}$$

- We can evaluate \hat{e}:
 $$\hat{e} = \hat{r}^2 + r \hat{\phi} \hat{\phi}$$

- The area element will be $r \, r \, d\phi$.

Cylindrical coordinates

- Extension of plane polar coordinates to include z.
 $$x = r \cos \phi \quad y = r \sin \phi \quad z = z$$

- Volume element is:
 $$dV = r \, dr \, d\phi \, dz.$$
Spherical coordinates

Points described by radius, polar angle, azimuthal angle (i.e. \(r, \theta, \phi \)).

\[
\begin{align*}
x &= rsin\theta cos\phi \\
y &= rsin\theta sin\phi \\
z &= rcos\theta \\
r &= \sqrt{x^2 + y^2 + z^2} \\
\theta &= \text{cos}^{-1}\left(\frac{z}{r}\right) \\
\phi &= \text{tan}^{-1}\left(\frac{y}{x}\right)
\end{align*}
\]

We can find the orthogonal basis vectors using:

\[
\begin{align*}
\hat{r} &= \frac{\partial r}{\partial r} / \left| \frac{\partial r}{\partial r} \right| \\
\hat{\theta} &= \frac{\partial r}{\partial \theta} / \left| \frac{\partial r}{\partial \theta} \right| \\
\hat{\phi} &= \frac{\partial r}{\partial \phi} / \left| \frac{\partial r}{\partial \phi} \right|
\end{align*}
\]

\[
\begin{align*}
\hat{r} &= \sin\theta cos\phi \hat{i} + \sin\theta \sin\phi \hat{j} + \cos\theta \hat{k} \\
\hat{\theta} &= \cos\theta \cos\phi \hat{i} + \cos\theta \sin\phi \hat{j} - \sin\theta \hat{k} \\
\hat{\phi} &= -\sin\phi \hat{i} + \cos\phi \hat{j}
\end{align*}
\]

\[
\text{d}V = (dr)(r \text{d}\theta)(r \sin\theta \text{d}\phi) = r^2 \sin\theta \text{d}r \text{d}\theta \text{d}\phi.
\]
Complex numbers

- Complex numbers are a closed field \(\Rightarrow \) all operations return \(z \)
- Complex conjugate \(z^* = a - ib \) for \(z = a + ib \)
 \(\Rightarrow \) \(z \cdot z^* = a^2 + b^2 \geq 0 \)
 \(\Rightarrow \) \(z + z^* = 2 \text{Re}(z) \)
 \(\Rightarrow \) \(z - z^* = 2i \text{Im}(z) \)
 \(\Rightarrow \) \(\frac{1}{z} = \frac{z^*}{|z|^2} \)
- Multiplying corresponds to scaling and rotation.
- Euler's identity: \((a \cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta\)
 \(\Rightarrow \) can be used to derive trig identities
 e.g. \(\cos n\theta = \text{Re}(e^{i\theta})^n = \text{Re}(e^{i\theta + i\theta}) \)
 e.g. \(\cos \theta = \frac{1}{2}(z + z^{-1}) \Rightarrow \cos 5\theta = \frac{1}{2^5}(z + z^{-1})^5 \).
- Euler's formula: \(e^{i\theta} = \cos \theta + i \sin \theta \).
- The \(n \)th roots of unity are the solutions to \(z^n = 1 \) for positive \(n \).
 \(e^{i\theta} = 1 \Rightarrow \theta = \frac{2\pi k}{n}, \quad k = 0, 1, 2, \ldots, n-1 \)
 \(\Rightarrow \) roots are \(1, \omega, \omega^2, \ldots, \omega^{n-1} \) with \(\omega = e^{2\pi i/n} \).
- We define the complex logarithm as:
 \(\ln z = \ln(\text{re}^{i\theta}) = \ln r + i(\theta + 2\pi n) \quad n = 0, \pm 1, \pm 2, \ldots \)
 \(\Rightarrow \) the principal value is \(\ln r + i\theta \) for \(\theta \in [0, 2\pi) \).
- Likewise, general powers will be multi-valued
 \(z^{2^n} = e^{2^n \ln z} \)
- The fundamental theorem of algebra states:
 \(a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 \)
 has \(n \) complex roots for all possible complex coefficients.
Hyperbolic Functions

- **Define:** \(\cos z = \frac{1}{2}(e^{iz} + e^{-iz}) \) and \(\sin z = \frac{1}{2i}(e^{iz} - e^{-iz}) \).
- The hyperbolic functions are these functions evaluated on the imaginary axis:
 \[
 \cosh y = \cos(iy) = \frac{1}{2}(e^y + e^{-y}) \\
 \sinh y = \frac{1}{i} \sin(iy) = \frac{1}{2i}(e^y - e^{-y})
 \]

We can then define \(\tanh, \sech, \cosech \) etc.

- We can generate identities by substituting \(iy \) in and using
 \[
 \cos iy = \cosh y, \quad \sin iy = i\sinh y.
 \]
 \[
 \Rightarrow \cosh^2 y - \sinh^2 y = 1
 \]
 \[
 \Rightarrow \cosh(A + B) = \cosh A \cosh B + \sinh A \sinh B
 \]
- Inverse hyperbolic functions can be expressed as elementary functions.
Calculus and Analysis

Limits

1. Intuitively, \(\lim_{x \to x_0} f(x) = k \) means \(f(x) \) can be made arbitrarily close to \(k \) by making \(x \) close enough to \(x_0 \).

2. The \(\varepsilon-\delta \) definition: For real \(f(x) \) defined on some open interval containing \(x_0 \) (but not necessarily at \(x_0 \)), \(\lim_{x \to x_0} f(x) = k \) means for any \(\varepsilon > 0 \), \(\exists \delta > 0 \) such that:
 \[|f(x) - k| < \varepsilon \text{ for all } 0 < |x - x_0| < \delta \]

 "I.e. if you give me an \(\varepsilon \), I can find \(\delta \) to stay within \(\varepsilon \) of \(k \).

3. In practice, we guess the limit then prove with \(\varepsilon-\delta \).

4. Limits at infinity: \(\lim_{x \to \pm \infty} f(x) = k \) for all \(x \geq X \).

5. Limits can be manipulated by addition and multiplication.

If a quotient is indeterminate (top and bottom both 0 or \(\pm \infty \)), we can use L'Hôpital's rule:
\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.
\]

Continuity and Differentiability

1. A real function \(f(x) \) is continuous at \(x = a \) iff:
 i) \(f(a) \) exists
 ii) \(\lim_{x \to a} f(x) \) exists and equals \(f(a) \).

2. A function \(f(x) \) is differentiable at \(x = a \) iff:
 i) it is continuous at \(x = a \)
 ii) \(f'(a) \) exists i.e. \(\lim_{h \to 0} \frac{f(a + h) - f(a)}{h} \) exists.
Leibniz formula

- Used to find nth derivative of a product of functions (just like Binomial theorem):
 \[
 \frac{\partial^n(fg)}{\partial x^n} = \sum_{m=0}^{n} \binom{n}{m} f^{(n-m)}(x) g^{(m)}(x)
 \]
 \[= f^{(n)} g + n f^{(n-1)} g + \frac{n(n-1)}{2} f^{(n-2)} g^2 + \ldots + f g^{(n)} \]
- Can be proved by induction.

Infinite Series

- Given a sequence of terms u_0, u_1, u_2, \ldots, the nth partial sum is $S_n = \sum_{k=0}^{n} u_k$

- If the partial sums have a finite limit as $n \to \infty$, the infinite series is convergent.
 \[\Rightarrow\] if it doesn't converge, it either diverges or oscillates.

- If $\sum_{k=0}^{\infty} |u_k|$ converges, the series is absolutely convergent (which also implies $\sum_{k=0}^{\infty} u_k$ converges)
 \[\Rightarrow\] otherwise if $\sum_{k=0}^{\infty} u_k$ converges but $|u_k|$ doesn't, series is conditionally convergent.
 \[\Rightarrow\] for absolutely convergent series we can rearrange terms.

Geometric progressions

- $S_n = \sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}$ because $S_n = r + r^2 + \ldots + r^k = r^{n+1} + S_n - 1$.

- Series is absolutely convergent for $|r| < 1$
 \[\Rightarrow\] $\sum_{k=0}^{\infty} r^k = \frac{1}{1 - r}$

- If $|r| \geq 1$, series cannot converge.
Convergence tests

1. $u_k \to 0$ as $k \to \infty$ is a necessary condition for convergence (but insufficient, e.g. harmonic series).

2. Comparison test:
 - Compare with a series of known convergence, v_k
 - If all terms $\leq v_k$ for all $k \geq K$, S_n converges
 - If all terms $\geq v_k$ for divergent v, S_n diverges.
 - Try to compare with geometric series or harmonic series.
 - p-series test: $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges for $p > 1$ by comparison with geometric series.
 $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges for $p \leq 1$ by comp. with harmonic

3. Ratio test
 - If $\lim_{k \to \infty} \frac{u_{k+1}}{u_k} < 1$, S_n converges
 - If $\lim_{k \to \infty} \frac{u_{k+1}}{u_k} > 1$, S_n diverges
 - If ratio = 1, test indeterminate.

4. Alternating series:
 - Use the Leibniz criterion.
 $\sum_{k=0}^{\infty} (-1)^k a_k$ with $a_k > 0$ converges if a_k is monotonic decreasing for large enough k and $\lim_{k \to \infty} a_k = 0$.

5. Integral test:
 - If $f(n)$ is continuous, positive, and decreasing on $[1, \infty)$:
 $\sum_{n=1}^{\infty} f(n)$ converges/diverges as $\int_1^{\infty} f(x) dx$.
Power series

- Series of the form \(f(x) = \sum_{k=0}^{\infty} a_k x^k = a_0 + a_1 x + a_2 x^2 + \ldots \)
- Either:
 - converges for \(x = 0 \) only
 - converges for all finite \(x \)
 - converges for \(|x| < R \), diverges for \(|x| > R \).
- Using ratio test and \(L = \lim_{k \to \infty} \frac{a_{k+1}}{a_k} \)
 - convergent for \(|x| < \frac{1}{L} \), divergent for \(|x| > \frac{1}{L} \).
- For a complex power series, this will define a circle of convergence.

Taylor series

- \(f(x) = f(a) + (x-a) f'(a) + \frac{(x-a)^2}{2!} f''(a) + \frac{(x-a)^3}{3!} f'''(a) + \ldots \)
- Or Maclaurin series when \(a = 0 \): \(f(x) = f(0) + xf'(0) + x^2 f''(0) + \ldots \)
- We can truncate the Taylor series and add a remainder term:
 \(f(x) = f(0) + x f'(0) + \frac{x^2 f''(0)}{2} + \cdots + \frac{x^n f^{(n)}(0)}{n!} + R_n \)
 \(\text{with } R_n = \frac{1}{n!} \int_0^x (x-t)^n f^{(n+1)}(t) \, dt \)
- \(L \) derived by \(f(x) = f(0) + \int_0^x f'(t) \, dt \) (F-TC) then LBP.

- \(e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \)
- \(\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \)
- \(\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots \)
- \(\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \)
Newton-Raphson

- Helps us find x^* such that $f(x^*) = 0$

- If we have an initial guess x_0, we need h such that $f(x_0 + h) = 0$.

 $0 = f(x_0 + h) \approx f(x_0) + hf'(x_0)$

 $\Rightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$

- Then we can iterate this to converge on x^*.

- If E_i is the error in x_i:

 $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \Rightarrow E_{i+1} = E_i - \frac{E_i f(x_i)}{f'(x_i)}$.

 \Rightarrow approximating the last term with a Taylor expansion:

 $E_{i+1} \approx E_i \cdot \frac{f''(x^*)}{2f'(x^*)}$

 - i.e. rapid quadratic convergence

- If there is a turning point between the root and x_i, it may not converge.
Integration

- Formally: \(\int_a^b f(x) \, dx = \lim_{N \to \infty} \sum_{i=0}^{N-1} f(x_i) (x_{i+1} - x_i) \). \(\approx \) area under curve.

- Hyperbolic substitutions:
 \[
 \sqrt{x^2 + a^2} \Leftarrow x = a \sinh y \\
 \sqrt{x^2 - a^2} \Leftarrow x = a \cosh y \\
 \frac{a^2}{x^2} \Leftarrow x = a \tanh y
 \]

- Integrate using complex numbers, e.g., \(\int \cos x e^{x \phi} \, dx = Re\left(\int e^{x(x+i\phi)} \, dx \right) \).

- If \(I(a) = \int_{a(x)}^{b(x)} f(x; a) \, dx \)

\[
I'(a) = \int_{a(x)}^{b(x)} \frac{\partial f}{\partial a} \, dx + \frac{\partial b}{\partial a} f(b; a) - \frac{\partial a}{\partial a} f(a; a)
\]

Stirling's approximation

\[
\ln n! = \sum_{k=1}^{\infty} \ln n. \quad \text{But } \sum_{k=1}^{n} \ln x \, dx \leq \sum_{k=1}^{n} \ln n \leq \int_{1}^{n+1} \ln x \, dx
\]

\[
\therefore \ln n! \approx n \ln n - n \quad \text{for large } n.
\]

- Cauchy-Schwarz inequality

\[
\langle a, b \rangle^2 \leq \|a\|^2 \|b\|^2 \text{ where } \langle \cdot, \cdot \rangle \text{ is the inner product.}
\]

- For an \(N \)-dimensional vectors \(\langle a; b \rangle = \sum_{i=1}^{N} a_i b_i \)

\[
\left(\sum_{i=1}^{N} a_i b_i \right)^2 \leq \left(\sum_{i=1}^{N} a_i^2 \right) \left(\sum_{i=1}^{N} b_i^2 \right)
\]

- Taking \(N \to \infty \), we get Schwarz's inequality

\[
\left(\int_{a}^{b} f(x)g(x) \, dx \right)^2 \leq \int_{a}^{b} (f(x))^2 \, dx \int_{a}^{b} (g(x))^2 \, dx.
\]
Multiple integrals

\[\iiint f(x) \, dV = \lim_{N \to \infty} \sum f(x) \, dV. \]

- Cartesian: \(dV = dx \, dy \, dz \)
- Cylindrical: \(dV = r \, dr \, d\phi \, dz \)
- Spherical: \(dV = r^2 \sin \theta \, dr \, d\phi \, d\theta \)

We can do the integrals in any order.

If limits are independent, we can factor the integral out.

Gaussian distribution integrals

- \(I = \int_{-\infty}^{\infty} e^{-x^2} \, dx \) is a common improper integral.
- Evaluate with polar coordinates:
 \[I^2 = (\int_{-\infty}^{\infty} e^{-x^2} \, dx) (\int_{-\infty}^{\infty} e^{-y^2} \, dy) = \iint e^{-(x^2+y^2)} \, dxdy. \]
- Technically should use \(a \) in limits then \(\lim_{a \to \infty} \)
Probability

- Outcomes w_i are mutually exclusive
- The sample space is the set of all possible outcomes: $\Omega = \{w_i\}$
- An event is a subset of Ω

\[P(A \mid B) = \frac{P(A \cap B)}{P(B)} \quad \Rightarrow \quad P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)} \]

(Bayes' Theorem)

- Law of total probability: $P(A) = \sum_i P(A \mid B_i) P(B_i)$

Random variables

- Map sample states to an allowed value of the random variable, such that the subsets partition the space.
- Assign a probability distribution $P(x)$.

- Poisson distribution: $P(x = n) = e^{-\lambda} \frac{\lambda^n}{n!}$

\[\lambda \] can be shown that it is the limit of a binomial distribution as $n \to \infty$, with $np = \lambda$.

- For continuous random variables, the probability density function is

\[f(x) \, dx = P(x - dx \leq X < x + dx) \]

\[P(a \leq X \leq b) = \int_a^b f(x) \, dx \quad \text{with} \quad \int_{-\infty}^{\infty} f(x) \, dx = 1. \]

\[F(a) = \int_{-\infty}^{a} f(x) \, dx. \]

- Median is a a such that $F(a) = \frac{1}{2}$
- Variance of a distribution is the same even when conditioned...
Ordinary Differential Equations

- A first-order ODE has the form \(F(y', y, x) = 0 \).
- An \(n \)-th order ODE: \(F(y^{(n)}, y^{(n-1)}, \ldots, y', y, x) = 0 \).
- A separable 1st order ODE:
 \[
 \frac{dy}{dx} = \frac{F(x)}{g(y)} \Rightarrow g(y)dy = f(g(x))dx.
 \]
- The general solution (including a constant) can be found by an initial/boundary condition.

- A linear 1st order ODE:
 \[
 \frac{dy}{dx} + p(x)y = f(x) \quad \text{if } f(x) = 0 \text{, it is homogeneous; and separable.}
 \]

 \(y \) and \(\frac{dy}{dx} \) appear linearly.

 \(\Rightarrow \) can be solved with an integrating factor, \(\mu(x) \), such that

 \[
 \mu(x) \cdot \text{LHS is the derivative of something } w.r.t. x.
 \]

 \[
 \Rightarrow \mu(x) = e^{\int p(x)dx}
 \]

 \(\Rightarrow \) \[
 \frac{\partial}{\partial x} (\mu(x)y) = \mu(x)f(x) \quad \text{which is easy to solve.}
 \]

- Substitutions may be required to make an ODE linear/separable.
- Homogeneous ODE:
 \[
 \frac{dy}{dx} = F\left(\frac{y}{x}\right) \quad \text{ie} \ F \text{ invariant when } x \text{ and } y \text{ scaled.}
 \]

 \(\Rightarrow \) solve by sub \(u = \frac{y}{x} \)

 \[
 \Rightarrow y = u(x)x \Rightarrow x \frac{du}{dx} + u = f(u) \quad \text{\(<\text{separable.}\)}
 \]

- Bernoulli ODE:
 \[
 \frac{dy}{dx} + p(x)y = q(x)y^n
 \]

 \(\Rightarrow \) sub \(z = y^{1-n} \)

 \[
 \frac{dz}{dx} = (1-n)y^{-n}\frac{dy}{dx}
 \]

 \[
 \Rightarrow \frac{dz}{dx} = (1-n)[-p(x)z + q(x)] \quad \text{< linear.}
 \]
Second-order equations

- A linear 2nd order ODE: \(\frac{d^2y}{dx^2} + p(x) \frac{dy}{dx} + q(x)y = f(x) \).

Let with the linear differential operator \(L \), we can rewrite
\[
L = \frac{d}{dx}^2 + p(x) \frac{d}{dx} + q(x) \Rightarrow Ly = f(x)
\]

\(\Rightarrow L(xu) = xL(u) \) if \(x \) constant, \(\Rightarrow \) because linear.

\(\Rightarrow L(u+v) = L(u) + L(v) \)

- For a homogeneous 2nd order ODE \((Ly = 0) \), any linear combination of solutions is a solution by principle of superposition.
- For inhomogeneous case, i.e. \(Ly = f(x) \):
 - A particular integral is any solution of \(Ly = f(x) \)
 - The complementary function \(y_c \) is the general solution of \(Ly = 0 \)
 - The general solution is the sum: \(y(x) = y_c(x) + y_p(x) \).

2nd order ODEs are generally hard to solve unless constant coefficients.

Consider homogeneous 2nd order linear ODE:
\[
\frac{d^2y}{dx^2} + 2a \frac{dy}{dx} + by = 0.
\]

Let sub \(y = e^{\lambda x} \) as a trial gives the auxiliary equation \(\lambda^2 + 2a \lambda + b = 0 \)

\(\Rightarrow \) if roots are negative real, we have oscillatory behavior.

\(\Rightarrow \) if \(\lambda_1 = \lambda_2 \), we have critical damping: \(y = (C_1 + C_2 x)e^{-ax} \).

- For linear 2nd order inhomogeneous ODEs with constant coefficients:
 - \(y_c \) can be found as above.
 - \(y_p \) can be found with trial solutions
 - If \(f(x) \) is a polynomial, try \(y_p = \text{polynomial of same degree} \).
 - If \(f(x) = xe^{\lambda x} \), try \(y_p = de^{\lambda x} \).
 - If \(f(x) = \cos kx + \sin kx \), try \(y_p = d_1 \cos kx + d_2 \sin kx \).
 - But if scalar multiples of these trial solutions are already solutions of the homogeneous eq, we may need to multiply by \(x \) or \(x^2 \) and try again.
Alternatively, since it is linear and differential operators commute, we can factorise:

\[(\frac{d}{dx} - \lambda_1)(\frac{d}{dx} - \lambda_2) = f(x)\]

Let \(z(x) = (\frac{d}{dx} - \lambda_2)y \Rightarrow (\frac{d}{dx} - \lambda_1)z = f(x)\).

Let solve for \(z\) then for \(y\).

This gives us a particular integral.
Multivariable calculus

- Mixed partial derivatives are always equal, and partial derivatives commute: \(f_{xy} = f_{yx} \)
- Integrating w.r.t one variable, we can treat others as constant but then we will need to add an arbitrary function.
- For \(f(x, y) \), \(df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \).
- Taylor series becomes:
 \[
 f(x+h, y+k) = f(x, y) + f_x(x, y)h + f_y(x, y)k + \frac{1}{2} f_{xx}h^2 + f_{xy}hk + \frac{1}{2} f_{yy}k^2 + \ldots
 \]

- Suppose \(f(x, y) \) where \(x = x(u, v), y = y(u, v) \). By an abuse of notation, we write \(f(x, y) = f(u, v) \) even though they are different functions:

 \[
 \begin{align*}
 \frac{\partial f}{\partial u} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \quad \text{multivariable chain rule=} \\
 \frac{\partial f}{\partial v} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}
 \end{align*}
 \]

 e.g. \(f(x, y) \to f(r, \theta) \) : \(x = r \cos \theta, y = r \sin \theta \)
 \[
 \frac{\partial f}{\partial r} = \cos \theta \frac{\partial f}{\partial x} + \sin \theta \frac{\partial f}{\partial y} \quad \text{etc.}
 \]

- If both \(x \) and \(y \) are functions of \(t \):
 \[
 \frac{df}{dt} = \left(\frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} \right)
 \]

- If we have \(f(x, y, z) = 0 \), then the partial derivatives have reciprocity and are cyclic.
 i.e. \(\left(\frac{\partial x}{\partial y} \right)_z = \left(\frac{\partial y}{\partial x} \right)_z \) and \(\left(\frac{\partial x}{\partial z} \right)_y \left(\frac{\partial y}{\partial x} \right)_z \left(\frac{\partial x}{\partial x} \right)_z = -1 \)
Exact differentials

\[w = p(x,y) \, dx + q(x,y) \, dy \] is a differential form in \(x \) and \(y \).

\(w \) is an exact differential if \(\exists F(x,y) \) such that \(df = p \, dx + q \, dy \).

\(\Rightarrow \) equivalently, exact iff \(\frac{\partial p}{\partial y} = \frac{\partial q}{\partial x} \).

\(\Rightarrow \) if \(p \, dx + q \, dy \) is exact, \(F(x,y) = c \).

\(\Rightarrow \) we can make an exact differential form exact with an integrating factor: \(\mu(x,y) \cdot [p \, dx + q \, dy] \).

\(\Rightarrow \) this is very difficult to solve for \(\mu \), so we instead try to find \(\mu(x) \) or \(\mu(y) \) only.

\(\Rightarrow \) e.g. \(\mu(x) \):

\[\mu \frac{\partial p}{\partial y} = q \frac{\partial \mu}{\partial x} + \mu \frac{\partial q}{\partial x} \] if exact

\[\Rightarrow \frac{1}{\mu} \frac{d \mu}{dx} = \frac{1}{\alpha} \left(\frac{\partial p}{\partial y} - \frac{\partial q}{\partial x} \right). \]

\[\Rightarrow \text{likewise for } \mu(y): \frac{1}{\mu} \frac{d \mu}{dy} = -\frac{1}{\rho} \left(\frac{\partial p}{\partial y} - \frac{\partial q}{\partial x} \right). \]

Maxwell's relation

\(\Rightarrow \) Any two of \((p, V, T, S) \) can describe the state of a gas.

\(\Rightarrow \) Given a thermodynamic relation, we

\(\Rightarrow \) The fundamental thermodynamic relation is

\[\frac{dV}{T} = -p \, dV \]

\(\Rightarrow \) if we treat \(V \) as a function of \((S, V) \):

\[\frac{dV}{T} = \left(\frac{\partial V}{\partial S} \right)_V \, dS + \left(\frac{\partial V}{\partial V} \right)_S \, dV \]

\[\Rightarrow \left(\frac{\partial V}{\partial S} \right)_V = T \text{ and } \left(\frac{\partial V}{\partial V} \right)_S = -p \]

\[\Rightarrow \left(\frac{\partial V}{\partial S} \right)_S = -\left(\frac{\partial p}{\partial S} \right)_V \text{ by mixed partials. This is one of } \text{Maxwell's relations.} \]

\(\Rightarrow \) We can derive the others using Legendre transformations

\[\Rightarrow F = V - TS \Rightarrow dF = -SdT - p \, dV \]

\[\Rightarrow H = V + PV \Rightarrow dH = TdS + Vdp \]

\[\Rightarrow G = H - TS \Rightarrow dG = -SdT + Vdp. \]
We can also derive a different type of relation:
\[dV = T dS - P dV \]
but let \(U = U(T, S) \)

\[\Rightarrow \Delta U = T dS - P \left[\frac{\partial V}{\partial T} dT + \frac{\partial V}{\partial S} dS \right] \]

then we take partial derivatives and equate.

Stationary points

- Because \(f(x) = f(x_0) + \nabla f(x_0) \cdot (x - x_0) \), if a point is stationary if \(\nabla f(x_0) = 0 \).
- To find the character of the stationary points, we use the determinant of the Hessian:
 \[H = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} \]
 \[\det H > 0 \quad \text{and} \quad f_{xx} > 0 \quad \Rightarrow \text{minimum} \]
 \[\det H > 0 \quad \text{and} \quad f_{xx} < 0 \quad \Rightarrow \text{maximum} \]
 \[\det H < 0 \quad \Rightarrow \text{saddle} \]
 \[\det H = 0 \quad \text{inconclusive} \]
- For more variables:
 \[\Rightarrow \text{if all eigenvalues} > 0, \text{ min} \]
 \[\Rightarrow \text{if all eigenvalues} < 0, \text{ max} \]
 \[\Rightarrow \text{else saddle} \]

Conditional stationary values

- To optimise \(f(x, y) \) subject to \(g(x, y) = c \), solve
 \[\nabla f = \lambda \nabla g \]
 where \(\lambda \) is a Lagrange Multiplier
- Consider some displacement \(d\vec{x} \)
- \(d\vec{x} \) must be tangent to \(g(x, y) = 0 \).
 \[\Rightarrow (\nabla g) \cdot d\vec{x} = 0 \]
- Likewise, \(d\vec{f} = (\nabla f) \cdot d\vec{x} = 0 \) by definition of a stationary point
- \[\Rightarrow \nabla f \parallel \nabla g \]
- For more constraints:
 \[\nabla f = \lambda \nabla g + \mu \nabla h \]
Boltzmann distribution

Consider a system which has \(n \) possible discrete states, in which holds \(N_i \) particles whose energy is \(E_i \):

\[N = \sum_{i=1}^{n} N_i \]

\[E = \sum_{i=1}^{n} N_i E_i \]

A given distribution of particles can be achieved in \(W \) ways:

\[W = \frac{N!}{N_1!N_2!...N_n!} \]

The most likely state maximises \(W \), or \(\ln W \) equivalently:

\[\ln W = \ln(N!) - \sum_{i=1}^{n} \ln(N_i!) \]

\[L = \ln(N!) - \sum_{i=1}^{n} \ln(N_i!) - \alpha \left(\sum_{i=1}^{n} N_i - N \right) - \beta \left(\sum_{i=1}^{n} N_i E_i - E \right) \]

\(N_i \) are the variables, \(\alpha, \beta \) need solving for.

\[\frac{\partial L}{\partial N_i} = \ln N - \ln N_i - \alpha - \beta E_i \]

Then set \(\frac{\partial L}{\partial N_i} = 0 \) and solve for \(N_i \):

\[N_i = Ne^{-\alpha - \beta E_i} \]

This gives the Boltzmann dist.

Different assumptions about particle states leads to different \(W \).
Vector calculus

- Let $\phi(x, y, z)$ be a scalar field.
 $$\text{grad } \phi = \nabla \phi = \left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z} \right).$$
- The rate of change of ϕ in direction \mathbf{t} is the directional derivative
 $$\frac{d\phi}{ds} = \mathbf{t} \cdot \nabla \phi.$$
- This implies that $\mathbf{t} \cdot \nabla \phi$ is the direction of most rapid increase.
- Given a surface $F(x, y, z) = c$, ∇F must be normal to the surface because F is constant along the surface.
 $$\Rightarrow \mathbf{n} = \frac{\nabla F}{|\nabla F|}.$$

Line integrals

- Consider a curve parameterized by t: $\mathbf{r}(t) = (x(t), y(t), z(t))$
 $$d\mathbf{r} = \frac{d\mathbf{r}}{dt} dt$$
- For a scalar field parameterized by an arc length s:
 $$\int_C \phi \, ds = \int_s \phi(\mathbf{r}(s)) \, ds$$
- For a more general parameter t:
 $$\int_C \phi \, ds = \int_t^s \phi(\mathbf{r}(t)) \left| \frac{d\mathbf{r}}{dt} \right| \, dt$$
- For a vector field $\mathbf{E}(t)$
 $$\int_C \mathbf{E} \cdot d\mathbf{r} = \int_{t_1}^{t_2} \mathbf{E}(\mathbf{r}(t)) \frac{d\mathbf{r}}{dt} \, dt.$$
- The Gradient theorem:
 $$\int_C (\nabla \phi) \cdot d\mathbf{r} = \int_{t_1}^{t_2} d\phi = \phi(t_2) - \phi(t_1)$$
Conservative fields

- A line integral independent of the path.
- \(\mathbf{E} = -\nabla \phi \) for some \(\phi(x) \)
- \(\mathbf{E} \cdot d\mathbf{s} \) is exact}
- \(\oint \mathbf{E} \cdot d\mathbf{s} = 0 \) for all closed curves.
- \(\nabla \times \mathbf{E} = 0 \)

Surface integrals

- For a general curved surfaces \(S \) in space, the vector area element is defined by \(d\mathbf{A} = \mathbf{n} \, dS \). The total vector area is \(\int_S \mathbf{n} \, dS \)
- The flux of \(\mathbf{E} \) through \(S \) is defined by:
 \[\int_S \mathbf{E} \cdot d\mathbf{A} = \int_S \mathbf{E} \cdot \mathbf{n} \, dS \]

Divergence

- \(\text{div} \, \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \) \(\in \text{SCALAR} \)
- The divergence theorem:
 \[\iiint_V (\nabla \cdot \mathbf{F}) \, dV = \iint_S \mathbf{F} \cdot d\mathbf{S} \]
- Can be used to define divergence:
 \[\nabla \cdot \mathbf{E} = \lim_{\delta V \to 0} \frac{1}{\delta V} \int_{S_S} \mathbf{E} \cdot d\mathbf{S} \]
- If a surface is not closed, we can first construct a closed one then apply the divergence theorem.
- The Laplacian is the divergence of a gradient
 \[\nabla^2 \phi = \nabla \cdot (\nabla \phi) = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} \]
 \(\Rightarrow \) it is also a scalar
\[\nabla \times \mathbf{E} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial x & \partial y & \partial z \\ F_x & F_y & F_z \end{vmatrix} \quad \text{(Vector)} \]

- **Stokes theorem:** \[\int_S \nabla \times \mathbf{E} \cdot d\mathbf{S} = \oint_C \mathbf{E} \cdot d\mathbf{r} \]
 where \(C \) bounds \(S \).

 L.H.S. we RH grip rule for direction.

- This leads to a geometric definition: \[\hat{n} \cdot (\nabla \times \mathbf{E}) = \lim_{h \to 0} \frac{1}{h} \int_{c} \mathbf{E} \cdot d\mathbf{s} \]
- For any vector conservative field \(\mathbf{E} = -\nabla \phi \), \(\nabla \times \mathbf{E} = 0 \).
- Many different surfaces can be bounded by a closed curve but only one volume is bounded by a closed surface.
- A multiply connected surface may have multiple bounding curves.

 e.g. annulus

\[\int_S (\nabla \times \mathbf{E}) \cdot d\mathbf{S} = \int_C \mathbf{E} \cdot d\mathbf{r} + \int_S \mathbf{E} \cdot d\mathbf{A} \]

- For a planar surface, we can use Green's theorem, a special case.
Fourier Series

- Functions are orthogonal on an interval if their inner product is zero:
 \[\int_a^b f(x)g(x) \, dx = 0 \]

- On the interval \([-\pi, \pi]\), all \(\cos mx\) and \(\sin mx\), \(m,n \in \mathbb{Z}\) are mutually orthogonal (but not normalised):
 \[
 \int_{-\pi}^{\pi} \cos mx \cos nx \, dx = \begin{cases}
 2\pi, & m = n = 0 \\
 \pi, & m = n \neq 0 \\
 0, & m \neq n
 \end{cases}
 \]
 \[
 \int_{-\pi}^{\pi} \sin mx \sin nx \, dx = \begin{cases}
 \pi, & m = n \neq 0 \\
 0, & \text{otherwise.}
 \end{cases}
 \]
 \[
 \int_{-\pi}^{\pi} \cos mx \sin nx \, dx = 0
 \]

- We can change bounds to \(\pm L\) provided we scale \(mx \to \frac{mt\pi}{L}\) then this will work for any \([a,b]\) such that \(2L = b - a\).
- \(\sin mx\) and \(\cos nx\) form a basis, such that almost any \(f(x)\) can be represented with a Fourier series:
 \[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{nt\pi x}{L} + b_n \sin \frac{nt\pi x}{L} \right) \]
 \[L \]

- Fourier coefficients can be found by integrating and after multiplying with \(\cos \left(\frac{nt\pi x}{L} \right)\) or \(\sin \left(\frac{nt\pi x}{L} \right)\):
 \[a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{nt\pi x}{L} \, dx \]
 \[b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{nt\pi x}{L} \, dx \]

- For even functions, all \(b_n=0\), so it is a cosine series.
- For odd functions, all \(a_n=0\), so it is a sine series.
- Fourier coefficients decrease like \(1/n\), so we can approximate functions.
- We can observe how fast the coefficients decline to understand convergence.
- Around a discontinuity, the Fourier series will always overshoot, even in the limit, though the width of the overshoot decreases. Gilly phenomenon.
- Differentiating always reduces smoothness; Fourier coefficients drop less rapidly.
The mean-square value of a periodic function can be evaluated using Parseval's theorem:
\[
\frac{1}{2L} \int_{-L}^{L} |f(x)|^2 dx = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)
\]

The set of values, for different \(n \), is the power spectrum and describes how power is distributed amongst the harmonics.

Complex Fourier series
\[
f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i \frac{2\pi nx}{L}}
\]
\[
c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-i \frac{2\pi nx}{L}} dx
\]

*\(e^{i \frac{2\pi nx}{L} } \) is used as a basis.

* For complex functions, \(f(x) \) and \(g(x) \) are orthogonal if:
\[
\int_{a}^{b} [f(x)]^* g(x) dx = 0.
\]
Linear Algebra

- A **linear vector space** over a field of scalars defines addition and scalar multiplication: associative, commutative, distributive.
- A **mapping** of a vector space assigns \(x \in V \) to \(y \in V \)

 e.g. \(A: x \to y \) or \(A\mathbf{x} = \mathbf{y} \)

Matrices

- **Subscript notation:** \(A = (a_{ij}) \), \((A)_{ij} = a_{ij} \)
- Unsummed indices must match.
- **Matrix addition** \(C = A + B \Rightarrow C_{ij} = a_{ij} + b_{ij} \)
- **Matrix mult (not commutative):** \(C_{ij} = A_{ik}b_{kj} \) (sum implied).
- The **commutator** is defined by \(C = [A, B] = AB - BA \)

- The **transpose** is given by \((M^T)_{ij} = (M)_{ji} \)

 - \((MT)^T = M \)
 - \((ABC...YZ)^T = Z^T Y^T ... C^T B^T A^T \)
- A symmetric matrix satisfies \(S^T = S \), i.e. \(a_{ij} = a_{ji} \) (square matrices).
- An antisymmetric matrix satisfies \(A^T = -A \), i.e. \(a_{ij} = -a_{ji} \) (square matrices).
- We can always decompose a square matrix \(B \) into \(A \) and \(S \):

 \[S = \frac{1}{2} (B + B^T) \quad A = \frac{1}{2} (B - B^T) \]

- A **diagonal matrix** has nonzero entries solely on the diagonal.
- The **identity matrix** has ones on the diagonal \(I = (d_{ij}) \)
- An **orthogonal matrix** is a square matrix that satisfies \(OO^T = O^TO = I \)
- The complex conjugate of a matrix: \(A^* = (a_{ij}^*) \)
- The **hermitian conjugate** is \(A^\dagger = (A^T)^* = (A^*)^T = (a_{ji}^*) \)
- The **trace** is the sum of diagonal elements: \(\text{tr} \ A = a_{ii} \)

 \(\Rightarrow \) invariant under cyclic permutation i.e. \(\text{tr} ABC = \text{tr} CBA \)
Determinants

- The minor of a matrix element is the matrix made by deleting the ith and jth rows. The cofactor is the signed minor.
- The classical adjoint of a matrix contains the transposed cofactors.
- The general rule for a determinant: \(|B| = \sum_{j=1}^{n} b_{ij} (\text{adj } B)_{ij} \)

\[\Rightarrow \text{ expand on a (signed) row/col and compute sub-determinants.} \]

- Can be written in terms of the Levi-Civita tensor:
 \[\varepsilon_{ijk} = \begin{cases} 0 & \text{any pair of } i, j, k \text{ equal} \\ 1 & \text{even permutation} \\ -1 & \text{odd perm.} \end{cases} \]

\[\Rightarrow |A| = \varepsilon_{ijk} a_{1i} a_{2j} a_{3k} = \varepsilon_{ijk} a_{i1} a_{j2} a_{k3} \]

- From this we can derive some key properties:
 - Interchanging any two rows/cols flips sign of det
 - \(\det A = 0 \) if any two rows/cols are the same
 - \(\det(AB) = (\det A)(\det B) \)
 - \(\det A = \det A^T \)

Inverse

- If \(A^{-1} \) exists, it is both the left and right inverse:
 \[A^{-1}A = AA^{-1} = I \]
- We can find the inverse using:
 \[A^{-1} = \frac{\text{adj } A}{\det A} \]

- If \(\det A = 0 \), matrix is singular (i.e., no inverse)
- An orthogonal matrix satisfies \(OO^T = O^T O = I \)
 \[\therefore O^{-1} = O^T \quad \text{and} \quad 10^T 10 = 10^2 = 1 \]
- Rotations and reflections are both orthogonal.
 - E.g., a rotation gives \(x' = x - 2(x \cdot n)n \)
 \[\Rightarrow 0 = I - 2nn^T \]
Linear equations

- If $Ax = y$ and $|A| \neq 0$, we can use Cramer's rule:
 $$x_i = \frac{\det A_i}{\det A}$$
 where A_i is A with the ith column replaced by vector y.

- If A and y are shorter than x, system is underdetermined and we have a family of solutions that live in a subspace.

- If A and y are taller than x, we may have redundancy or inconsistency.

- If A and y are the same height as x:
 - $|A| \neq 0$ \Rightarrow unique solution
 - $|A| = 0, y \neq 0$ \Rightarrow not unique

Eigenvalues and eigenvectors

$n \times n$:

$A \mathbf{v} = \lambda \mathbf{v} \Rightarrow (A - \lambda I)\mathbf{v} = 0 \Rightarrow \det(A - \lambda I) = 0$.

- Eigenvalue
- Eigenvector

- The determinant is called the characteristic polynomial $p_\lambda(A)$, degree n.
- The set of eigenvalues is the spectrum of A.
- $\Rightarrow \lambda$ may be complex, corresponding to a rotation.
- Trace $= \sum$ of eigenvalues.
- Determinant $= \text{product}$ of eigenvalues.

- Eigenvectors can be found by solving $(A - \lambda I)\mathbf{v} = 0$.

- Real symmetric matrices (i.e., $A = A^T$) have real eigenvalues.

- The eigenvectors of a symmetric matrix are orthogonal.

- For a real symmetric matrix A, with orthonormal eigenvectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$ as the columns, i.e., $X = (\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n)$, $X^TX = I$.

- $A^T X \mathbf{x} = (\lambda_1 \mathbf{e}_1 \ldots, 0)$.
Partial Differential Equations

- A general PDE has the form $F(x,y,..., f_x, f_y, ... f_{xx}, f_{xy}, f_{yy}, ...) = 0$.
 - The order is the order of the highest derivative.
 - The wave equation: $\frac{\partial^2 \psi}{\partial t^2} = c^2 \nabla^2 \psi$

- In general, boundary conditions will be functions.

- In the heat equation, the rate of heating is proportional to the convexity of the temperature surface: $\frac{\partial \Theta}{\partial t} = \kappa \nabla^2 \Theta$

- In electrodynamics, $\nabla^2 \varphi = -\frac{\rho}{\varepsilon_0}$ (Poisson's equation), reduces to Laplace's equation if $\rho = 0$.

- The choices of B.Cs are:
 - Dirichlet condition: give the value of φ on ∂D, e.g. to model heat propagation from boundary to interior.
 - Neumann condition: give the normal derivative of φ on ∂D e.g. to find potential after specifying the field.
 - Linear combination of the above.

- A general linear 2nd order PDE in 2D:
 $\alpha \frac{\partial^2 \psi}{\partial x^2} + 2\beta \frac{\partial^2 \psi}{\partial xy} + \gamma \frac{\partial^2 \psi}{\partial y^2} + ... + h \psi = 0$
 - Elliptic if $b^2 < 4ac$ e.g. Laplace's equation.
 - Parabolic if $b^2 = 4ac$ e.g. heat equation in 1D.
 - Hyperbolic if $b^2 > 4ac$ e.g. wave equation.
2D Elliptic and Hyperbolic PDEs

For equation of the form \(\frac{\partial^2
abla^2 \Psi}{\partial x^2} + 2b \frac{\partial^2
abla^2 \Psi}{\partial x \partial y} + c \frac{\partial^2
abla^2 \Psi}{\partial y^2} = 0 \)

We try solutions \(\Psi(x, y) = f(x + py) = f(x) \).

From the chain rule, \(\frac{\partial f}{\partial x} = \frac{\partial f}{\partial z} \), \(\frac{\partial f}{\partial y} = pf \frac{\partial \frac{\partial f}{\partial z}}{\partial z} \)

\(\Rightarrow cp^2 + 2bp + a = 0 \), \(\Rightarrow p \) and \(p \) complex for elliptic

The general sol will be a linear comb. of independent solutions:

\(\Psi(x, y) = f(x + py) + g(x - py) \)

\(\Rightarrow F \) and \(g \) are arbitrary function decided by the B.C.

* e.g. \(\Psi(x, t) = f(x - ct) + g(x + ct) \) for the wave equation

* e.g. \(\Psi(x, y) = f(x + iy) + g(x - iy) \)

\(\Rightarrow \) only need to use real part i.e. \(\Psi(x, y) = \text{Re} \{ f(z) + g(z^*) \} \)

Separation of variables

If we substitute \(\Psi(x, y) = X(x) Y(y) \), we end up with ODEs

Requires \(b = 0 \), if not change variables to \(\omega = x + ay \), \(z = x - by \).

After \(\Psi(x, y) = X Y \) and rearrange, we will have

\(F(X) = G(Y) \), thus they must equal a constant, \(\lambda \).

\(\Rightarrow \) For each allowed \(\lambda \), we will have a different \(X \) and \(Y \)

\(\Rightarrow \) general solution will be linear combination \(\Psi = \sum_{\lambda} \alpha \Psi_{\lambda}(x, y) \)