
Classical Dynamics
Newtonian Mechanics

We can write NII as md t Idmat E
me g for a rocket in space with

no external forces
Uodrntmdv o sv u.tn Imig

The equation of motion for an object can be found by
directly considering forces or by differentiating Etotal
For a many particle system the centre of mass is
B Im miri capital letters for aggregate quantities

the total momentum R is changed by the total
external force Eo external internal

due tomaEa Ea Fao t Eat NII

ME Fa E E
the total angularmomentum I is changed by the total
external torque G zero
Eaxfa IIE Ea Ian Faro I ta rel Ero

I Go

The kinetic energy of a particle is F Imu
E de me de m Cri E dt d Izmir
for a system of particles this work may instead
change the interaction between particles and
increase the potential energy
hence E Tt V and d E Eco dry

coordinatesystemsm.tt
regular quantities depend on the choice of origin obviously

Eta I I t a x A
constant E G tax E

the intrinsic angular momentum J is defined in the
zero momentum frame it is independent of origin

Consider a Galilean transformation from S S
E I t It f t Cie nonrelativistic

momentum is simple R B'tMK
angular momentum is I 1a IH x Ra'tMay If
S is the 2 MF the angular momentum is

I I t M E XI
energy depends on the frame T T t I MU

n
KE in 2 MR
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Unitvector directions are only constant in Cartesian
consider thedynamics in plane polars y E Ep

for general motion p and 0 are
changing with 0 hence so are

Ee and E I
but the unit vectors can only change do
orthogonal tothemselves Is OlEa

ite
the velocity can be derived directly bygeometry

pep to Ioi n dy
If pd0Eat deep rfpd0

ri isEp POE p
radial tangential

Acceleration in planepolars is givenby

if F poi Ept 2pct trifle
the radial term includes the centripetal acceleration
the transverse term f dat angularmomentumperunit mass

We can instead express polarcoordinates on an Argand
diagram hence I ei0 Eo iei0

Aap Pei0 F p 4ei0 poitwotie

Rotating frames2

If there is a frame So in which Miro E where E is
generated by known physical causes what is the equation
of motion in a moving frame S

E ra RCH E ri RCH
in an inertialframe RICH o ie constant velocity

so the equation of motion is the same
but for general ACA m I E ma There is
a fictitious force eg in elevatorgoing up you

feel force
pushing down

consider the case where S rotates with angularvelocity w

the rate of change of unit vectors
is given by Eni w x Ei
if the frames coincide at f O

I Io y x E
velocity in Soapparentvelocity in S

the equation of motion is then

man E 2M ay x x Myx CoeXI
apparent real fictitious

my dwarf is the centrifugal force i e a constant

force in the lab frame is required for rest in S

man court ma CE E wiki IEEE
f maip outwards
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centrifugal force explains the Earth's equatorial bulge
The rock deforms until it provides equal force in the space
frame to cancel the centrifugal force
2MCaine is the Coriolis force a swirl which
appears when moving within a rotating frame
the Coriolis force on the Earth's surface
is F 2mA v sin 7 and points

to the right when in the Northern hemisphere
for a falling body F 2mA cos I

The motion of rotating frames can also be derived using
an operator dad fit t Ex

DIE s Kat tax CID tax e
this allows us to analyse the most general case where
an observer moves on a path BCH while using a
rotating frame with changing aft
the operator acts on us too leading to an

additional fictitious force the Euler Force
man E 2mCw_xy Mat x Cafe Maitre

Orbits
Consider a particle moving in a central force field
the potential yields a purely radial
force E PV Mar EI defbecause the force exerts no couple

angularmomentum is conserved
0

J Mr 2.0 const

thus motion is confined to a plane enclosing 1 I
total energy is conserved
E UCH t Iz m i'trip Izmir UCA t I

2M r2
we thusdefine the effective potential to include

2the angularvelocity's contribution Ue Cr Ucr d
2mm

Consider some attractive force f Arn A o

UefaCr ARTI t Emre unless n D
orbits correspond to equilibriumpoints ddtertr.ro

n I 32hL I n L 3

stable at ro stable at ro unstable orbit
all orbits bound unbound for E o r 70 or r 7

Robert Andrew Martin



Nearly circular orbits can be treated as oscillations about
ro We can approximate Veach as locally quadratic
with a Taylor expansion about F ro with Veeecrofo

by definition Alternatively use E 0

Lt Imi t Ueff r m r't M 0

Nectar Arn I but A I
mr3 Mro this is the

o m r t cntn r ro O dradial deviatio
i e SHM with Wp fnf3 mJroz fromthe circular

path
we can compare this to the angular freq
of orbit up Tnt3 Wc

The relationship between Wp and Wc determines the orbit
periods of

n 1 sum up Zak perturbation
in one orbiti e ellipsecentred atorigin

SHM is separable in Cartesian
and spherical coordinates or

ne 2 inversesquare up wetrie ellipse with focus at origin doesn't
connect

n I E leads to near elliptical back

orbit that precesses

Inverse squareorbitme
Consider a force law f AH where A 6mm
for gravity
This force law implies Kepler's laws
Kt Planetary orbits are ellipses with the sun at

one focus
K2 the line joining a planet to the sun sweeps

equal areas in equal times
i e conservation of angular momentum

k3 T2 da where a is thesemimajor axis

propenmofinitar Isin aEarnationeismantraith

I miroE is ImpEr Er Io Io Vi
integration

I x is A Er constant

I is constant so we integrate Ix y ACER te 0

dot bothsides with I i Ine E t Alr te E O

I I xD Hm
r Ite Er Ima r re

polar
1 tecos

this is theEquation of an ellipse KI with ro Imai
and a focus at F O
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we can convert to Cartesian with
Sercos 0 r ro ex

thisgives the semimajor1minor axes

a I b I Lb
I e offer

the periapsis andapoapsis deppend on
thesemimajor axis and eccentricity
rmax a Ite rmin all e 2a rmaxtrmin

The area of an ellipse is Fab ITI
l e2 312

rate ofsweeping is IPO Em
hence the period is T ITro

thisshows K3 Tien Fm 2h11
The energy of the orbit is given by E Imv2 Ap

Aq CIXI AEI take dotproduct with itself
A2e2 J2 ft Z Iv EI At AZ

I I xeI Jv JYmr
n

Ace I T Cf Etr E AC
2ro

hence the energy is related to the major axis E Fa
independent of eccentricity

angular momentum depends on ro TE Amro

Kepler's laws can instead be derived by considering energy
F Izmir t Limp Er

sub a In to simplify algebra then complete the square

Unbound orbits
ummm

the eccentricity of the orbit can be written in terms of
E and J e I t IET

MA

LL Ote 4 the orbit is bound and E is negative
e 1 unbound parabolic orbit E O
e 1 unbound hyperbolic orbit E positive

For a parabolic orbit the focal length is f Ermin I ro
F

co
F ro k

y 4fCf x
semimajor

for hyperbolic orbits e I a co but all previous
formulae are valid

tide.iiimatinee airline i

E and J
J mbVos E I muts

the total angle of deflection
is X 2 as IT with cos as Ye

Han0 I mtg
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For a repulsive inversesquare force CegRutherford scattering
we use the otherbranch of the hyperbola
distance of closest approach is all te

this can instead bederived by integrating the force

Changinganorbitm
The most efficient way to move between
two orbits is the Hohmann transfer orbit
the change in energy to move into
the transfer orbit elliptical
Et GaMIa 6M TI mVe waythen Dv Vt Vi
likewise there will be another Oik to move from the

transferorbit into the largercircularorbit

If there is another planet a gravitationalslingshot can
be used to change an orbit normally to increase speed

e g if there is a fast planet the probe can enter
an unbound orbit around the planet
convert 6PE KE

TheN bodyprobleinm
For a constant external potential the two bodyproblem
can be solved exactly
each orbit is an ellipse in a common plane with
the centre of mass at one focus
balancing gravity and the centrifugal force
GMMz
Tz

M w 2 Mer
MitMz

if we use the reduced mass this simplifies

M Mm.M.fm Mruk 6M72 m

other relations can then be written directly
in terms of theseparation vector E

T I µ riz
m

I µ rn E
reduced to a 1 body

E µ in
problem in com frame

However for N 33 the N body problem does not
generally have an exactsolution unless interactions
are simple harmonic
generally 3 body interactions result in a

close binary forming
which mayrelease enough
KE for one body to escape
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Tiddforcesm
The gravitational potential 0Gt is only defined w.at
some constant reference girl P
However for a distant source all objects are uniformly
accelerating towards it so there is no measurable effect
theonly thing that can be measured is the tidal field
1 g a O g which describes how 0 o

e

g varies between points fo and fo ta FIE to
for a small radial change dreI

Og friary f Ef Ice.it ErmEr
Er

along Io Igf doesn'tchange
IgldoEa affdoEo I left EYE
same for Eo i I Ceo EfEo feterenc

Hence an object in a gravitational field
experiences radial stretching and lateral squeezing also in 0

if the object is also orbiting then
there is another contribution from the
centrifugal force not in 0
the net result is
36hr1R stretch GMIR3 none

Radial t toorbitalplanet inorbital plane

On Earth water moves in response to the moon's gravity
moon 2x

stronger
than sun

at a distance z from the centre the difference in field
causes a radial stretching of 26mm ZIP and tangential
compression of Gmm ZIP no centrifugal contrib

integrating both with foadz the tidal potential differenc
as a result of the moon is tide

36M 92

from the Earth tide gh where g is assumed to
be constant g

GMeta
equating these gives the height of the tides

The Earth rotates w r't the two bulges of water hence
there are two tides a day
the tidal field from the sun complicates things
friction from the water slows down the Earth the
moon recedes to conserve angular momentum
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Rigid Body Dynamics
A rigid body is a manyparticle system in which all
inter particle distances are fixed
For a general rigid body vector triple product

I E r xp EI xm caus Emmy Emrick E
hence in general I is not parallel to cry They
are related by the inertia tensor E a matrix
expanding in Cartesian gives

Iggy
Emly427 Enjoy Emx z

EEmY EEE imi Fwiw

The kineticenergy of a rotating rigid body is
1 E zmcwxrt.ca x rt ay Ey T Ice I

Because I is symmetricandreatm it has 3 real
eigenvalues Ii Iz Is and orthogonal eigenvectors

Ii Ii Is
E E E Tee the

principle moments of inertia
principle axes

in the

I Enid
nipa axisI ask In w k no sum defines ya as a pri

The KE in the eigenbasis is F ICI wit Iz wit Iswit

thesurface of constant k E in w space is an ellipsoid
this inertia ellipsoid is fixed to the body and
has axes of length on YfIi
I is perpendicular to the surface of the inertia
ellipsoid i e Out I

For an object to rotatesmoothly on an axis it must be

statically balanced ie axis passes through com

dynamically balanced i e axis is a principal axis
Thecharacter of the principal axes depends on symmetry
spherical tops legsphere cabe are balanced around the
COM I is scalar and is the same aboutanyaxis through com
symmetrical tops have IEEE Is E is unique and
normal to theplane containing EI
asymmetrical tops have I t Iz F I3
No one Ii can be larger than the sum of the others
The limiting case is a lamina which results in the
perpendicular axes theorem I Iz Iz
The parallel axes theorem states that I about an
axis parallel to the COM separated by a is

I Io t Ma
in a general basis we instead need I Io t En where
Er is the inertia tensor of a pointmass at the CM about
the origin and Eo is the inertia tensor aboutthe com
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Free precession and Euler's equationsmummy
Euler's equations considerthechange in I in the body frame
S which rotates with respectto an inertial frame so

NII Fitso E
coordinate transform dads Tub tax
equation of motion f dat twx I
this can be expanded easily since we are in theeigenbasis
G I W t Iz Id w wz and cyclic perms

For a symmetric top I Iz I F Is Euler'sequations are
Iai I I3 web I
I ai II I w wz let It II wz be
Izai o the body frequency

ai t Rbwe O wz Rf W O

solving the coupled 00Es shows that precesses around

the 3 axis tracing a cone in the body frame
I Ice so I also trace a cone
thesign of Rio determines whether
the inertia ellipsoid is oblate or prolate
In the space frame we require I to be
constant no external torques The 3 axis prolate top
and as rotate around I at the space frequency

Cy W EI tween t W3

I ICWEItw.CI tI3wseI
we can eliminate andwrite us FE RbIs
linear relationships so as I EI are coplanar

fittest a x E FEI RE xE f E x EI
this means that I and thus g are rotating
around I with space frequency Is FI

Poinsot's construction is a geometric treatment relating
the body space cones

constant I and F I E I so component of
along I must be constant So tip of us stays on plane
the contact point P is instantaneously at rest so the

ellipsoid rolls i e cones rotate around each other
can relate frequencies using Rbs into Rs since
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A triaxial body has 3 different principalmoments Ii Ia Is
to analyse use conservation laws I I i wi Izwa Ians

T ICI wit Iz wit Izwit
rotation around 1 axis or 3 axis is stable because we
cannot be changed at constant I withoutchanging T
but rotation about the 2 axis is unstable

The Major axis theorem states that any freely rotating
body that is notperfectly rigid will lose energy until it aligns
with its major axis

because of centrifugalforces a non rigid body deforms
and thus losesenergy
I is fixed so the resulting rotation minimisesenergy
for constant J by aligning I with the largest I

Gyroscopes and Lagrange's approachrumrunner
Consider a heavy symmetric top pivoted at base
we define the Eulerangles 0,0 X
4 Of Ez t EI t XE n

E t Orsino Iz fit Icoso EI
Gravity exerts some torque 6 mgSino i

Js Iz X cosG is constant 63 0

Tz Jscos0 t IsinO JzcosOt IOIsin0 is const GEO

Hence and I can be expressed in terms of the constants

Is Jz as well as

OI Iz s0 ix It 53050 520502
Is in20 I since

I IF Iz is taken aboutthepoint of support
OCH can be foundfrom conservation of energy
E I E t TZ Js A

ZI toughcos0 const
ZI sing

Is

I Ueff O
in principle thisgives 0 and thus 0 X However

it is easier to reason in terms of the effective potential
If the energy is 2 the min Uefe Ello n Ueff

there is some allowed region of 0 0230 Of
The value of E determines what kind 9
of precession occurs allowedregion

If E Uo there is one stable value of 0 so we have

steady precession
for 0 00 cons angularmomentum IO X const
Oo can be found with Keeftool 0 leading to
Oj J3 I Jf4IimT0 cosa O

ZI cosO
hence steady precession requires the gyroscope flywheel to
be rotating sufficiently fast such that 5234 Ii mghcoso

Robert Andrew Martin



in the gyroscopic limit Ji mgh I we can Taylor
expand to find two solutions
slow precession if m9h J

fast precession I BAIcosof i e neglect couple

If E Uo we can Taylor expand the potential about
the minimum OA undergoes 54th
hence and I also oscillate
the resulting motion is called nutation
and is generally quitecomplex

Asimple case of nutation is for a horizontalgyroscope
expand Ueft about M2 in the
gyroscopic limit i E IIE
UeffCA const t z II d taffyyire SHM with frequency Is BII

Lagrangian Dynamics

Hamilton's principle states that a system follows a path
that extremises the action functional f Sto L bei qi that
where L is the Lagrangian such that I T V
For fixed endpoints 85 0 implies the Euler Lagrange equations

dat Eq If Vi

The terms Effi Epi are conjugate momenta
if the Lagrangian is independent of a coordinate qi then
the conjugatemomentum pi is constant
symmetries are closely related to conservation lows

the Lagrangian doesnot define energy so we form the Hamiltonian

HCqi pish Piti LCgi Ei t

Ei ftp P'i 3 If 3
Do If the Lagrangian is time independent the Hamiltonian is conserved

e g 54M I moi IKI
Eff o E conserved

e g Orbits I EmCir t R02 Vcr

Off o pg F Mr conserved

e g symmetric top I ICO't 03in20 tf Is It'Ocosokmghcos0

p Jz and Px Js are conserved
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Normal Modes

In general small free displacements of a system about
equilibrium lead to linearequations
In a normalmode every element of the system oscillates
at a single frequency But a givensystem may have
multiple normal modes each with a different freq

Consider a twomass system with three ideal springs The

equations of motion which can be found from Hamilton's

principle can be written in matrix forms
M lm

hmfo.ammp.am lmmEid EEtIdl9iI
Hoc How

we use the trial solution Tifft Y ent
this results in homogeneous linear equations for the
constants kik 2h.tn

zn madLYI 8
nontrivial solutions iff determinant is zero

WE 3h4m or WE Klm
either Ktx 2 0 with mode x t H mETm

or Xi XE0 with mode x t tm m 4
in this case we could have guessed the normal modes

by symmetry then found freq with an restoringforceconstant
mass

Consider a general system specified by N generalised
coordinates Ei Suppose that the equilibrium position
is q O ti The KE is then F I Malrial
this can bewrittenas a quadratic function of the
coordinates T I get A it where M is the
mass matrix by construction
likewise we can write U t ftEG M and E must

be symmetricdat Ttu 0 NI ai t E of O

we then proceedthe same way as before

The normal modetheorem states that for a system with N
coordinates and quadratic KEIPE we can find N
orthogonal oscillatory modes

E ar M k is not a true eigenvalue equation
so modes I are not technically orthogonal
however IF M E 0 for it

If all W's are positive the system is stable Negative
Wrs correspond to exponentially growing modes mightjust
Degeneracy is when normalmode frequencies are equal be accidental
f General freeoscillation is a superposition of normal modes

e s Re Atto tf1 e
w't

t ein
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Elasticity i

strain is the relative change in adimension when ITa stress force loreal is applied i

Inthe elastic region they are directly proportional IF
o EE where E is Young's modulus

Usually a strain in one dimension corresponds to a compression

in orthogonal directions The Poisson ratio v encodes this
for a unitcode stress along the x axis causes strains
F Ea Ey Ez God I er 2

likewise for Oy oz
For an isotropic medium under uniform pressure
0 oy rz P Ex Ey Ez Pcl Zu
to first order thechangein volume of the cube is
f V I Ex they HEE It ExtoryTEE

the bulk modulus 8 is the constant ofproportionality
between appliedpressureand the decrease in volume

P Bff fo I 850 forstable
34 2g

medium ucf
If a stress is applied parallel to the

FTTsurface it is a shearstress defined if
by a shearangle oxy
mustbesymmetric for no netcouple oxy oy

can be produced by a combination of tensile Iv t
and compressive stress oz cry

E b

a a
theshear force is then 0hr2 on a T Tside length tr so theshearstress is o

the associated strain is Eex ox Voy of Itv
Theshear angle is the total angularchange
from the once parallelsides 8 2Ex se
the shearmodulus is then

2

C

G 0
912ex G zcFTA

Formally stress is represented as thesymmetric
stress tensor E whereeach element oscy is the
forced area in the direction transmitted along the y plane
since it is symmetric it can be diagonalised
hence arbitrary stresses can be represented as
principal components Coi or as
antisymmetric components represent a couple so can be

extracted and analysed separately
A strain can be thought of as a distortion thatmoves each
pointby a variable amount ie E Et ECE
two nearby points are moved by different amounts
where the difference is related to the gradient of I
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oftoxoriginal 1
distorted off yay

Exx

Theshearangle in the xy plane 2x
is 2 t y Eag Eyx EC yt2 of
This can all besummarised in the 21

20C

symmetric strain tensor

LEE EED eii.tl3 t at
the distortion due to a strain is Sf ESE
can always be diagonalised into principal axes

In an isotropicmedium theprincipal axes are the same
for both the stress and strain tensors
The relationship between stress andstrain can then be found
by solving El Ea Ey Ez Ood I er 2 and its

cyclic permutations
0 cyfjcyf.lt HE t VE z tVEI

this results in a part of stress proportional to strain
and a pressure proportional to the change in volume Tr E

E X Tr E I t 26

with X EI
Itu Ct 24 8 Zz G

Stored energyrum

W tzkx Efx Along the face n Ex
oII oxdistortion is 00cLExecEpc Eee 02

force is Oyo2CoxeOya0zx ox

W ExocosextEyxoyxtEzocozoc
we then need to add over all pairs
in the principal axes this simplifies to

storedenergy U o E 02 Ez t 03 E3permit volume
We can use the expression for E in terms of E
to find U in terms of E

UCE C X Ctr EP 26 Tr E

Beam theoryv

consider a beamsubject to pure bonding no shear
The top will be subjectto tension ya n

and the bottom to compression but Fitial 1h
therewill be an undistorted neutralaxis
from whichwe define the radius of curvature taggingTy

E Http L or Ey MG 1 dm
R Er

Hence the bending moment is
B J y ODA FIIR where g DA
I E fy2dA is the secondmomentof area

1
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To increase the beam rigidity we need to have Lfmore area away from the neutral axis

For beams with two orthogonal principal axes force and
deflection will beparallel

L

In a cantileverbeam bending moment
yis a function of x B f L x

forsmalldeflections the Roc can
be approximated as HR d

u EI y FCL x

yay FEEIGL
F dFor a general beam in equilibrium we
ppg

considerthe loadper unit length WCM ftp dkand equate forces moments wax
DF WGddx D8 Fda
W DIE EI y for smalldisplacements

Calculations may be simplified by the
reciprocity theorem the deflection at
Q due to load F at point P is the
same as the deflection at P due to
load F at Q This can be shown by considering energy stored
when loads at P Q are added sequentially

TIAn Euler strut is made by buckling
1

a beam with force F u
y

the bending moment at x is f Fy44

y
t EI y O FEI L it to fit

the Euler force is then Fe it
fine to O G

for Fc Fe the beam is compressed but doesn't buckle
for Fs Fe it will suddenly buckle
for a vertical cantilever of length 42 the result is the same

Dynamics of elastic mediawww

The net force in the oc direction is
Foc V KS t 25g 25

5 11 att equeationgEamotion
is of

20g Fez
D E

using the stressstrain relation with Ei L 3 t3
results in the vectorequation ofmotion

p ft's 6 OCPE t 6041

we can find wavelikesolutions with f Xo Yo Zo eilat k

IIIo cottaf E to t.EEo
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for transverse disturbances ie in y z the
result is a S wave s fors hear with pw2 ok

This is nondispersive with if Glp
for longitudinal disturbance we have a P wave

compression with V 4136 Ip
P waves are thus faster than S waves

Boundary conditions may be
free no normal stress E a If O

fixed no distortion 7 1 0
velocity

Theenergy flow in a wave is P yn Ty x transuggerce

in general this becomes F I I

Normalmodesofandastic6arh
For a cantilever the force required to
balance the load is f EI y WH

pij EIy
at x o yCoty401 0 since this is a cantilever
free end 814 0 y o

FC4 0 guy4 0 since F 18
dsc

The equation can then be solved for yGgH yCode
int

EIy afp y O

y Ae ik Be iKoe t Cen Oe k

must be solved numerically for the modes

Fluid Dynamics

In fluid pressure increases with depth since more fluid
must be supported Plz pg z
hence a body with crosssection A experiences an

upthrust pgA Oz

this gives Archimedes principle the upthrust is equal
and opposite to the weight of the fluid it displaces
this buoyancy force acts through the centre of mass

Ideal fluidsrun

An ideal fluid is incompressible and has no viscocity
assume themeanfreepath X of particles in the fluid
is negligibly small
normal stresses decay so fast that theonly possible
stress is isotropic pressure 9 02 03 p

the fluid is modelled as beingcomposed of fluid elements
Theseelements have welldefined values of macroscopic
properties like density velocity pressure
All fluids satisfy conservation of mass The flux through
an area element is p k df so the continuity equation is

If 0 PE O
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for an incompressible fluid p const O y O

For a small fluid element the
variation in pressure causes acceleration
FoeCoyoz fosoffe V Ife
there is also the force of gravity
so the equation of motion per unit volume is

P 0 DP pg Euler's equation

It is the material derivative necessary because

velocity is treated as a function of space and time
dy dt EI t doe Oy but doe Edt

f It th O

i.e Ft is the acceleration when moving in the same

path as the fluid element

Fluid flow can be visualised in 3 ways
pathlines track themovement of an element
streamlines plotthe velocity field at a giventime
streaklines connect all points that passed through a
particular reference e g if a drop of dye were

released at the reference
all three coincide for steady flow

For steady flow Bernoulli's equation can be used to
relate quantities along a streamline by conserving energy

gendewhitity
growpotential

energy flow in A v fp lo t Ep v t U tP energy out

by cons mass Air PE Ampa giving Bernoulli'sequation
at P I
T t z VZ t 01g

constant

for incompressible flow U O p const
Pt Epv2 tp0g const

curvedstreamlines require perpendicularpressure gradients
to provide the centrifugal force

e g Borda's mouthpiece what is the a

area of a jet ofwaterfrom a deephole
h

Momentum 1time Pv VA et v

By NII F Aft pghAhole daff
u APgh p

pghAhole p VA et
But Bernoulli's equation gives pgh Ipu

Ajet QEAno coefficient ofefflux usually 0.521
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Circulation
In general it is difficult to analyse fluids Cevennumerically
without assuming

incompressible O 1 0
irrotational i e no vorticity he One Q
This is often reasonable in the bulkof thematerial

The circulation K around a loop r is defined as k fry It
related to vorticity by Stokes theorem

K for y d f y If
Kelvin'scirculation theorem states that the circulation around
a loop moving with the fluid is constant Proof

Off fgfofq.dk y 044
Ot

rate of change of path
use Euler'sequation must be DE DE

for pI Og d v DE dk to 2 at

off off of the d
a

since this quantity is single valued by the gradient
theorem 0 0

i e vortex lines are conserved and move with the fluid
we can then generalise Bernoulli'sequation for an incompressible
fluid UsingOf put VICKI tf Ok and It It I O

Pt pOg t Ipv2 p to Extort

forsteady flow F 0 so y TCPtp0GHzpub o

Hence Ptp0GHzpv2 const on a streamline Bernoulli'sequation
if steady and irrotational Ptp0GHzpre const everywhere

Velocitypotentiate
If 0 4 0 1 0 0 for some scalar velocity potential
If it is also incompressible thispotential satisfies Laplace's equation
potential flow originates at a source Is ink analogous to charge
if there is a flow rate Q 0 q p v pzEr
we can applythe method of images to find 0 then

I 00 and pressure can befoundwith Bernoulli's equation
hence a source and sink are repulsive

Analysing the flow past a sphere is
analogous to a spherical conductor in
an electric field
0 Vorcoso far away and ur O

at the boundary F a

0 VorosQ t Epcost with B Voa

v IVosino at r a

from Bernoulli PLA Ip Vosin05 Pot pro
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pressure is symmetrical so there is no drag for this ideal fluid
for sufficiently highvelocities Plot a 0 at 0 1 Iz This
is anphysical the fluidundergoes cavitation

For a cylinder we have to locos0 rt af
But there is another flow the vortex
solution given by y 1Er Io vy
this is actually irrotational for E dt 0
if tf does not contain the cylinder
hence for a rotating cylinder with radius a and

angular velocity Mita 0 IF multivalued
For a rotating cylinder in a steady flow

Vocos of r ta t Eft
Vg toff Zuo s ino t

a

from Bernoulli PCE pro P tIpVo
play e Po ttzpvo2 tzpfiwosirio tff.az Utah

because there is an asymmetric term in 0 there will
be a net vertical force that can be found by integrating

fy f'tPVo K sine as inOdo pVo KI 0 ITa

this is the Magnus force E PVe x Ei

Vortices
Vortices can appear in liquids without a solidrotating
cylinder to cause them
The ideal irrotational vortex with E EtrIO has a

singularity as r o

The Rankine Vortex model assumes a frigid body rotating
core of radius R surrounded by a free vortex This
issimilar to the B field around a thick wire

Vol r W r RR f

ri r r i
w E a r

Thus two vortices of opposite sign will blow Is
each other a long at v Eid Their 7

d
separation is constant since the magnus v

force p k XI is balanced by their attraction
7006

Two vortices of the same sign will FAl

orbit around each other I d l
v of

we can construct a vortex ring toroidal
solenoid Drifts at a Inter at

H
near a flat plate it interacts with its image 2k

and spreads out
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Realfluidsnm

Fluids cannot maintain a shear stress because molecules
can move over each other

a sudden shear Exy produces a stress thatdecays over
a short timescale
to maintain a shearstress it must be continuously sheared
for a Newtonian fluid the strain rate is proportional
to stress I y daff 25 viscocity

out

Viscocity depends on the spatial variation of velocity

2exy yR 2 Ej t 2
viscocity is then defined as the shear flow between

two flat plates at y 0 y D y d
yup
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ie viscosity is the forceper unit area per unit velocitygradien
M is related to the time it takes a shearstress to
decay M Gts

For a Newtonian fluid Tij n IIa t F
force1volume comesfrom varying shearstresses

nses t s

in vector form thenew equationofmotion

Pff OPtpg note to co y

there is actually a constant in front of 0CO 1 related
to thebulk modulus since there is resistance to volumechange
for compressible fluids this simplifies to

pOff VP pot thru

Microscopically viscosity depends on the collisional mean
free path Consider a space varying quantity Q

as a particle moves over distance Xc at velocity Vt
thethermal velocity it exchanges QQ with surroundings
this random walk leads to a diffusion equation
0 Is TNT Q due to 30 motion

for viscosity Q P I
we define the kinematic viscosity VIZ Is 7 c Vt
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Poiseuille Flow
mmmm

Consider shearflow for a draining plate
for steady flow thot 0

p P everywhere OP o

y VII andonlyvaries with y
no slip at y o be o

noshear at y d Try Mdy
hence the equation of motion for an

incompressible fluid gives
7 Iffy pg yo InCyd 1yd
thisgives Poiseuille flow parabolic

total flow rate per unit area Q Sodvocdy

Consider flow in a circular pipe
with a pressure gradient up
for a annularcylindrical element
between r Adr with length L high p

f d P
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mustbe balanced by viscous forces forsteady flow
Icy MDII F 21Trly duty
the net viscous force is dear dr

dar 2itrl Mdf off 2hr1
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Boundarylayersandthekey.nodsnambermm
The bulk of a liquid may have steady flow
but to match the no slip B C there
must be a boundary layer in which there 2 1

is a velocity gradient and vorticity
The Reynolds number is the ratio of inertial stress
to viscousstress due toshear forces
the inertial stress is FIA tadpat PV2
the viscous stress for linear velocitychange is
Tay M M VIL

the Reynolds number is then Nr And
If Nn is large Cie high inertialstress randomtransverse
motions Leddy flows cause turbulence increasing the
effective viscosity effective Wt t LeddyVeddy

fluid flow around a sphere is complicated butcan be
analysed with dimensional analysis Cforsimple fluids
The drug force must be a function of P M Vo d
i e some force dimensionless function
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f pvoid Co Nr
Co is the drag coefficient a function of theReynoldsnumber
for low Nr viscosity dominates so Fa mduo
i e Co YNr
for high Nr inertial effects dominate so f a PdlVol
i.e Co is constant
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