Robert Andrew Martin

Partial Differential Equations

A PDE is any equation of the form F(u, ux, uy, uxx, uxy, uyy,...) = 0
b linear if F depends linearly on u terms, in which case we arrite Iu = f.
b obeys similar principles to linear ODEs, i.e the general solution can be constructed from particular + complementary.

The diffusion equation:
Ls for a conserved quantity with concentration Q and flux density E, conservation implies 29 + V.E = 0
Ls but the flux depends on the conc. gradient: E= -2VQ Ficks in the flux depends on the conc. gradient: E= -2VQ Ficks in the steady state
Ls this applies to heat conduction, with Q=CT.

· The wave equation: 4 mij = Fy => pols dy = Ity dx > Fy ≥ T = and SS ≥ Sx $\Rightarrow \frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}, \quad c = \sqrt{\frac{1}{p}}$

- Types of boundary condition:
 L> Dirichlet: u specified
 L> Neumann: ³y_{2x} specified
 L> Mixed: some LC of u and ³y_{2x} specified
 Separation of variables seeks solutions of the form

 u(x, t) = X(x)T(t)
 LS substitute in and Rearrange so LMS only contains T, t, RHS only contains X, x.
 - ⇒ each side must then equal a constant, o we have 2 ODEs. La for each value of this constant, there may be a different solution. In general, we must sum all.

Robert Andrew Martin

Laplace's and Poisson's Equations · Poisson's equation is a 2^{nq} order PDE : $\nabla^2 \Psi = \rho(x)$ · For the special case of p=0, it reduces to Laplace's equation. · Physical examples: Ly steady state diffusion L) electrostatics: $\nabla^2 \phi = -\frac{p}{2}$ Ly gravitation: $\nabla^2 \phi = 4\pi G \rho$ ideal irrotational fluid flow . The general solution to Laplace's equation can be written as a LC of a set of basis solutions. Polar coordinates ·Laplace's equation: $\frac{1}{2} \frac{1}{2} \left(\left(\frac{34}{2r} \right) + \frac{1}{r} \frac{34}{20} \right) = 0$ • For separable solutions: $r \frac{d}{R} \frac{d}{dr} (rR') = -\frac{1}{5} \overline{\Phi}'' = \lambda$ · IF Y is a physical quantity, it must be 211-periodic in Ø Else if it is a potential, Y' must be periodic. Ly so $\lambda = n^2$, and we have cases n = 0, $n \neq 0$. $\begin{aligned} \overline{\Phi}(\phi) &= \begin{cases} A + B\phi & n = 0 \\ A\cos n \phi + B\sin n \phi & n \neq 0 \end{cases} \\ \xrightarrow{R}(r) &= \begin{cases} C\ln r + D, & n = 0 \\ Cr^{n} + \thetar^{-n}, & n \neq 0 \end{cases} \\ \end{aligned}$

The general solution is then:

$$Y(r, p) = (A_0 + B_0 p)((c_{1}nr + B_0) + (A_n r^n + (nr^{-n})conp)$$
normally disappears + $\sum_{n=1}^{\infty} (B_n r^n + B_n r^n) sin np$
Spherical coordinates (axisymmetric)
· A xisymmetry implies independence of p (i.e. surface
of revolution around z_{-axis})
· Laplace's equation: $\frac{1}{r^2} \frac{2}{2r}(r^2 \frac{\partial y}{\partial r}) + \frac{1}{r^2 sin\theta} \frac{2}{\partial \theta}(sin\theta \frac{\partial y}{\partial \theta}) = 0$
· Separate: $\frac{1}{R} \frac{d}{d}(r^2 R') = -\frac{1}{\Theta sin\theta} \frac{d}{d\theta}(sin\theta \theta') = \pi$
· With the substitution $n = cos\theta$, $\frac{d}{d\theta} = -sin\theta \frac{d}{dn}$
 $\Rightarrow \frac{d}{dn}((1-u^2)\frac{d}{du}) + \pi\theta = 0$
b i.e. the angular part satisfies Legendre's equation.
 $\Rightarrow \lambda = U(L+1), L=0, 1, 2$ and $\Theta_L = P_L(cos\theta)$
· The general solution is then:
 $Y(r, \theta) = \sum_{l=0}^{\infty} (A_l r^l + \frac{B_l}{r^{l+1}}) P_l(cos\theta)$
· Fitting B.Cs may require integrating over the Legendre
polynomials exploiting orthogonality: $\int_{-1}^{1} P_m(x)P_n(x)dx = \frac{2}{2mi} Smn$

Uniqueness Suppose there are two solutions Φ_i , Φ_i Consider the difference of these solutions $\Psi = \Phi_i - \Phi_i$ $\nabla \cdot (\Psi \nabla \Psi) = (\nabla \Psi) \cdot (\nabla \Psi) + \Psi (\nabla^2 \Psi)$ (see because Poisson's $= |\nabla \Psi|^2$ \Rightarrow applying the divergence theorem, $\int |\nabla \Psi|^2 dV = \Phi_s (\Psi \nabla \Psi) \cdot ds$ \Rightarrow given Dirichlet boundary conditions, i.e. $\Phi = f(z)$ on S, $\Psi = 0$ when evaluated on $S \Rightarrow \int |\nabla \Psi|^2 dV = 0$ $\Rightarrow \Psi = 0$ on S and $\nabla \Psi = 0$ inside $\Rightarrow \Psi = 0$ \Rightarrow hence $\Phi_i = \Phi_i$ so any solution is unique. For Neumann boundary conditions, $\hat{P} \cdot \nabla \Phi = 0$ on S; the proof is similar.

 \rightarrow the Green's function is symmetric, i.e. $G(\underline{r},\underline{r}') = G(\underline{r}',\underline{r})$ Sif V is all space, G is called the fundamental solution. · The Green's function is the potential due to a point change at c', here the symmetry is obvious. · For Neumann B.Cs, 6 needs a different form on S Lathis arises because is 26 ds = is vo. 2ds = i v2 Galv, but $\int_{V} \nabla^2 G dV = \int_{V} S^{(3)}(x-x') dV = 1.$ · Consider a point charge out the origin of 30 space. The fundamental solution is given by $\nabla^2 G = \int^{(3)}(r)$ with $G \Rightarrow O$ as $|r| \Rightarrow \infty$ By symmetry, G is radial: $\frac{2}{2r}(r^{2}\frac{\partial 6}{\partial r}) = O$ for r#6 $\Rightarrow G(r) = A + \frac{2}{r}$ $\Rightarrow A = O$ to satisfy B.C at ∞ . L> (can be found by integrating 726 over a small sphere $\int_{r \leq \varepsilon} \nabla^2 G dv = \oint_{r \leq \varepsilon} \frac{\partial G}{\partial r} ds = - \int_{\varepsilon} \int_{r = \varepsilon} \frac{\partial G}{\partial r} ds = -4\pi($ · Hence if we shift the origin to \mathcal{L}' : $G(\mathcal{L}, \mathcal{L}') = -\frac{1}{4\pi |\mathcal{L}-\mathcal{L}'|}$

For a line of charge, the problem is equivalent to finding a 2D Green's Function, $D^2 G = S^{(2)}(r)$ $\Rightarrow G(r) = A + (\ln r)$ $\Rightarrow we can no longer force G \Rightarrow 0 as <math>r \rightarrow \infty$ ls to find (, we use the 2D divergence theorem fora small circle of radius <math>E. $\int_{r L E} \nabla^2 G dA = 2 rr (\Rightarrow C = 1/2 rr$ ls hence G is only defined to within an additive constant: $<math>G = \frac{1}{2 rr} \ln |C - C'| + const$

The method of images The method of images can be used to find G in some other simple geometries (the fundownental solution only applies in all-space). B half-space, i.e $\geq >0$: B need G to satisfy $V^2 G = S^{(3)}(r-C')$, $f \in D$ G=0 at $z=0 \in new B \cdot C$ G=0 at $z=0 \in new B \cdot C$ (pirichlet) B we can construct a solution in R^3 that fits this by placing an image charge at f'' = (x', y', -z'), with apposite sign $\therefore V^2 G = S^{(3)}(r-r') + S^{(3)}(r-r'')$ $\Rightarrow G(r,r') = -\frac{1}{4\pi |r-r''|} + \frac{1}{4\pi |r-r''|}$

The integral solution of Poisson's equations . For smooth functions Φ, Ψ in volume V enclosed by S, Green's identity states

Green's identity states $\int_{V} (\phi \nabla^{2} \psi - \psi \nabla^{2} \phi) dV = \oint_{S} (\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial r}) dS$

- $\Rightarrow \phi(\underline{r}') = \int_{V} R(\underline{r}) \, 6(\underline{r}, \underline{r}') \, dV + \oint_{S} f(\underline{r}) \, \frac{\partial 6}{\partial n} \, dS$
- 5 if V is all space and $f \rightarrow 0$ as $|r| \rightarrow \infty$, then provided 6 and Φ decrease fast enough $(x, \frac{1}{2})$: $\Phi(r') = \int_{R^3} P(r) \, 6(r, r') \, dV$ • For Neumann B.Cs, $\frac{36}{5n} = \frac{1}{4}$, $\frac{39}{5n} = g(r)$ on S: arbitrary $\Phi(r') = \int_{V} P(r) \, 6(r, r') \, dv - \oint_{S} g(r) \, 6(r, r') \, dS + C$