Partial Differential Equations

- A PDE is any equation of the form

$$
F\left(u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y_{y}, \ldots}\right)=0
$$

\longrightarrow linear if F depends linearly on a terms, in which care we write $\mathcal{I}_{n}=f$.
Lobeys similar principles to linear ODEs, i.e the general solution can be constructed from particular complementary.

The diffusion equation:
$L s$ for a conserved quantity with concentration Q and
flux density E, conservation implies $\frac{\partial Q}{\partial t}+\nabla \cdot E=0$
\rightarrow but the flux depends on the conc. gradient: $E=-\lambda D Q$ Rick's $\Rightarrow \begin{aligned} \Rightarrow \frac{\partial Q}{\partial t}=\lambda \nabla^{2} Q \leftarrow & \begin{array}{r}\text { reduces to Laplace's equation } \\ \\ \text { in the steady state }\end{array}\end{aligned}$
L this applies to heat conduction, with $Q=C T$.

- The wave equation:

$$
\begin{aligned}
& L m \ddot{y}=F_{y} \Rightarrow \rho d s \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial F_{y}}{\partial x} d x \\
& L F_{y} \approx T \frac{\partial y}{\partial x} \text { and } \delta s \approx \delta x \\
& \quad \Rightarrow \frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}, c=\sqrt{\frac{T}{p}}
\end{aligned}
$$

- Types of boundary condition:
\rightarrow Dirichlet: u specified
\rightarrow Newman: $\partial y_{\partial x}$ specified
\hookrightarrow mixed: some $L C$ of u and $\frac{\partial u}{\partial x}$ specified
- Separation of variables seeks solutions of the form

$$
u(x, t)=X(x) T(t)
$$

4 substitute in and rearrange so LHS only contains T, t, RHS only contains X, x.
Leach sidle must then equal a constant, owe have 2 ODEs. \rightarrow for each value of this constant, there may be a different solution. In general, we must sum all.

Laplace's and Poisson's Equations

- Poisson's equation is a $2^{\text {nd }}$ order PDE: $\nabla^{2} \psi=P(x)$
- For the special case of $\rho=0$, it reduces to Laplace's equation.
- Physical examples:
\rightarrow steady state diffusion
\rightarrow electrostatics: $\nabla^{2} \phi=-\frac{P}{} / \varepsilon_{0}$
\angle gravitation: $\nabla^{2} \phi=4 \pi 6 \rho$
L ideal irrotational fluid flow
- The general solution to Laplace's equation can be written as a LC of a set of basis solutions.

Polar coordinates
-Laplace's equation: $\quad \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial y}{\partial \phi^{2}}=0$

- For separable solutions: $\frac{r}{R} \frac{d}{d r}\left(r R^{\prime}\right)=-\frac{1}{\Phi} \Phi^{\prime \prime}=\lambda$
- If ψ is a physical quantity, it must be 2π-periotic in ϕ. Else if it is a potential, ψ^{\prime} must be periodic.
4 so $\lambda=n^{2}$, and we have cases $n=0, n \neq 0$.
- The general solution is then:

$$
\begin{aligned}
\Psi(r, \phi)= & \left(A_{0}+B_{0} \phi\right)\left(C_{0} \ln r+D_{0}\right)+\sum_{n=1}^{\infty}\left(A_{n} r^{n}+C_{n} r^{-n}\right) \cos n \phi \\
& \text { normally olisappeans } \\
& +\sum_{n=1}^{\infty}\left(O_{n} r^{n}+D_{n} r^{-n}\right) \sin n \phi
\end{aligned}
$$

Spherical coordinates (axisymmetric)

- Axisymmetry implies independence of ϕ (ie surface of revolution around z-axis)
- Laplace's equation: $\quad \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{\sin } \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)=0$
- Separate: $\quad \frac{1}{R} \frac{d}{d l}\left(r^{2} R^{\prime}\right)=-\frac{1}{\theta \sin \theta} \frac{d}{d \theta}\left(\sin \theta \theta^{\prime}\right)=\lambda$
- With the substitution $u=\cos \theta, \frac{d}{d \theta}=-\sin \theta \frac{d}{d u}$

$$
\Rightarrow \frac{d}{d u}\left(\left(1-u^{2}\right) \frac{d \theta}{d u}\right)+\lambda \theta=0
$$

Lie the angular part satisfies Legendre's equation. $\rightarrow \lambda=l(l+1), l=0,1,2$ and $\theta_{l}=P_{l}(\cos \theta)$

- The general solution is then:

$$
\psi(r, \theta)=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

- Fitting B.Cs may require integrating over the legendre polynomials exploiting orthogonality: $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\frac{2}{2 m+1} \delta_{m n}$.

Uniqueness
Suppose there are two solutions ϕ_{1}, ϕ_{2}. Consider the difference of these solutions $\psi=\phi_{1}-\phi_{2}$
$\left.\nabla \cdot(\psi \nabla \psi)=(\nabla \psi) \cdot(\nabla \psi)+\psi \nabla^{2} \psi\right)$ (zero because poisson's

$$
=|\nabla \psi|^{2}
$$

\rightarrow applying the divergence theorem,

$$
\int_{0}|\nabla \psi|^{2} d V=\oint_{s}(\psi \nabla \psi) \cdot d s
$$

\triangle given Dirichlet boundary conditions, ie $\phi=f(\underline{r})$ on S, $\psi=0$ when evaluated on $S \Rightarrow \int_{V} \mid \nabla \Psi^{2} d V=0$
$\rightarrow \psi=0$ on S and $\nabla \psi=0$ inside $\Rightarrow \psi=0$
\rightarrow hence $\phi_{1}=\phi_{2}$ so any solution is unique.

- For Newman boundary conditions, $\hat{n} \cdot \nabla \phi=0$ on S; the proof is similar.

The fundamental solution
Consider Poison's equation with Dirichlet conditions on a surface S which bounds a volume V.

- The Green's function for this problem is given by:

$$
\begin{aligned}
& \nabla^{2} G\left(r, r^{\prime}\right)=f^{(3)}\left(r-r^{\prime}\right), \quad r \in V \\
& G\left(r, r^{\prime}\right)=0, \quad r \notin V
\end{aligned}
$$

$L \delta^{(3)}\left(\underline{r}-r^{\prime}\right) \equiv \delta\left(x-x^{\prime}\right) \delta\left(y-y^{\prime}\right) \delta\left(z^{-z^{\prime}}\right)$
$\longrightarrow \quad \int_{V} f(\underline{r}) \delta^{(3)}\left(\underline{r}-r^{\prime}\right) d V=\left\{\begin{array}{cc}f\left(\underline{r}^{\prime}\right) & r^{\prime} \in V \\ 0 & r^{\prime} \notin V\end{array}\right.$
\rightarrow the Greeris function is symmetric, ie $G\left(r, r^{\prime}\right)=G\left(r^{\prime}, s\right)$
\rightarrow if V is all space, G is called the fundamental solution.

- The Greens function is the potential due to a point charge at ${ }^{\prime}$ ', hence the symmetry is obvious.
For Neumann B.Cs, 6 needs a different form on S

$$
\frac{\partial G}{\partial n}=\frac{1}{A}, A \equiv \oint_{s} d s
$$

\leftarrow before we had $6=0$ on s
\rightarrow this arises because $\int_{S} \frac{\partial 6}{\partial n} d 5=\int_{S} \nabla G \cdot \hat{n} d S=\int_{V} \nabla^{2} G d V$, but $\int_{V} \nabla^{2} 6 d V=\int_{V} \delta^{(3)}\left(\Gamma^{2}-V^{\prime}\right) d V=1$.

- Consider a point charge at the origin of 30 space.

The fundamental solution is given by $\nabla^{2} G=\delta^{(3)}(\underline{r})$ with $G \rightarrow 0$ as \mid |r $\mid \rightarrow \infty$.
By symmetry, G is radial: $\frac{\theta}{\partial r}\left(r^{2} \frac{\partial 6}{\partial r}\right)=0$ cor $r \geqslant 0$

$$
\Rightarrow G(r)=A+\frac{c}{r}
$$

$\longrightarrow A=0$ to satisfy $B \cdot C$ at ∞.
$\rightarrow C$ can be found by integrating D26 over a small sphere

$$
\begin{aligned}
\underbrace{\int_{r \angle \varepsilon} \nabla^{2} G d V}_{=1}=\oint_{r \varepsilon \varepsilon} \frac{\partial 6}{\partial r} d s & =-\frac{C}{\varepsilon^{2}} \oint_{r=\varepsilon} d s=-4 \pi C \\
& \Rightarrow C=-\frac{1}{4 \pi}
\end{aligned}
$$

- Hence if we shift the origin to ${\underset{\sim}{c}}^{\prime}: \quad G\left(r, r^{\prime}\right)=-\frac{1}{4 \pi\left|x-x^{\prime}\right|}$
- For a line of charge, the problem is equivalent to finding a 20 Green's function, $\nabla^{2} 6=\delta^{(2)}(\underline{r})$

$$
\Rightarrow G(r)=A+C \ln r
$$

\rightarrow we can no longer force $G \rightarrow 0$ as $r \rightarrow \infty$
\leq to find C, we use the 20 divergence theorem for a small circle of radius ε.

$$
\int_{r<\varepsilon} \nabla^{2} G d A=2 \pi C \Rightarrow C=1 / 2 \pi
$$

Whence G is only defined to within an additive constant:

$$
G=\frac{1}{2 \pi} \ln \left|r-c^{\prime}\right|+\text { cons. }
$$

The method of images

- The method of images can be used to find 6 in some other simple geometries (the fundamental solution only applies in all-space).
- 30 half-space, ie $z>0$:
\rightarrow need G to satisfy

$$
\begin{aligned}
& D^{2} G=\delta^{(1)}\left(1--^{\prime}\right), \quad r \in D \\
& G \rightarrow 0 \text { as }|r| \rightarrow \infty \\
& \left.G=0 \text { at } z=0 \quad \in \begin{array}{l}
\text { new } \\
\text { (Diricherlef }
\end{array}\right)
\end{aligned}
$$

\longrightarrow we can construct a solution in \mathbb{R}^{3} that fits this by placing an image charge at $I^{\prime \prime}=\left(x^{\prime}, y^{\prime},-z^{\prime}\right)$, with opposite sign $\therefore \nabla^{2} 6=f^{(3)}\left(\underline{r}_{-r_{1}}\right)+f^{(3)}\left(r_{-}-\underline{r}^{\prime \prime}\right)^{\prime}$

$$
\Rightarrow G\left(r, r^{\prime}\right)=-\frac{1}{4 \pi\left|\underline{r}-\underline{r}^{\prime}\right|}+\frac{1}{4 \pi\left|\underline{\underline{r}}-\underline{r}^{\prime \prime}\right|}
$$

Lb uniqueness, this is the solution L it we instead had Neman bounds, ie $\left.\frac{\partial 6}{\partial z}\right|_{z=0}=0$, we could use an image change with the same sign.
The image for a charge in a sphere has strength $-\frac{a}{r^{\prime}}$ and is located at $r^{\prime \prime}: \frac{r^{\prime \prime}}{a}=\frac{a}{r^{\prime}}$. It can be shown that this gives $6=0$ when $r=a$ as needed.

- For a circle, the image has strength -1 and is located again at the inverse point $\frac{c^{\prime \prime}}{a}=\frac{a}{r^{\prime}}$.

The integral solution of Poisson's equations - For smooth functions Φ, ψ in volume V enclosed by S, Green's identity states

$$
\int_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V=\oint_{S}\left(\phi \frac{\partial \psi}{\partial n}-\psi \frac{\partial \phi}{\partial r}\right) d S
$$

L follows directly from the divergence theorem \rightarrow can be used in 20, for surface S enclosed by carve C This can be used to find the integral solution once we know the Green's function, letting $\psi \equiv 6$ and solving $\nabla^{2} \phi=\rho(\underline{r})$.

- For Dirichlet B.Cs, $\phi=f$ on s
\rightarrow Green's identity gives

$$
\int_{v}\left(\phi \delta^{(3)}\left(\underline{r}-\underline{r}^{\prime}\right)-6 p\right) d v=\oint f \nabla 6 \cdot \underset{\sim}{n} d S
$$

$$
\Rightarrow \phi\left(\underline{r}^{\prime}\right)=\int_{V} \rho(\underline{r}) G\left(\underline{r}, \underline{r}^{\prime}\right) d V+\oint_{s} f(\underline{r}) \frac{\partial G}{\partial r} d s
$$

L if V is all space and $\in \rightarrow 0$ as $|x| \rightarrow \infty$, then provided σ and Φ decrease fast enough $\left(\alpha \frac{1}{r}\right)$:

$$
\phi\left(\underline{r}^{\prime}\right)=\int_{R^{3}} \rho(\underline{r}) G(\underline{r}, \underline{r}) d V
$$

- For Neman B.Cs, $\frac{\partial 6}{\partial n}=\frac{1}{A}, \frac{\partial g}{\partial n}=g(x)$ on S: arbitrary

$$
\phi\left(r_{n}\right)=\int_{v} \rho(\underline{r}) \sigma\left(\underline{r}, \underline{r}^{\prime}\right) d v-\oint_{s} g(r) G\left(\underline{r}, \underline{r}^{\prime}\right) d S+C
$$

