
 

Quantum Physics

The photoelectric effect reveals the quantum nature of light
the wave theory predicts that the energy ofelectrons
depends on lightintensity
but t intensity actually resulted in more electrons
with the same energy Energy onlydepended on freq
the EM field is quantised into photons with E Kw

A black body can be modelled as a cavity which supports
a number of modes per unit volume The energy density
is given by the Rayleigh Jeans Law

P T T DX 8 4 Kotd 7
pCT T as as a o This erroneous prediction
is the ultraviolet catastrophe
Planck solved this by quantising the energy modes

classically accelerating charges radiate energy so electrons
shouldspiral into the nucleus
Bohr proposed that the orbit's circumference must be
an integernumber of de Broglie wavelengths 2Trn n X
hence the angularmomentum is quantised L ht
orbits have specific energies in the explaining spectra

Electrons fired at a nickel crystal were shown to diffract
angles agree with the de Broglie hypothesis i e pink

Wavefunctions

A matter wave is described by YC E H Aexplain pie Eth
the probability density of a particle existing somewhere
when observed is PCK.tl 14 Csc H12
the wavefunction evolves deterministically until observation
the wave vector and freq must be known i e linear

momentum and energy must be known position unknown

Y is intrinsically complex
For a nonrelativistic particle E Ram w temk

i e quantum waves are dispersive

w and k cannot be chosen independently

Localisation
If we have any knowledge of position then a plane wave is

inadequate because it cannot be normalised We need to
localise the wavefunction by insisting LUCEHI 0 as let to

the region of localisation may change with time
we can construct a localised wavefunction with a weighted
linear combination of plane waves with different waverectors

Y Lx H tuff guyeick WHd k
if we consider f 0 we can ignore w a function of K
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hence Vod and gck form a Fourier pair
complex g k tr ff resole

it
doc

gurl is the momentum wavefunction and fully describes
thestate IgcKIT is the pdf for momentum

Hence knowledge of position is related to knowledge of momentum
this can be quantified by imposing a Gaussian momentum

wavefunction representing uncertain knowledge of p

g k aft
4
e
okk Kd42

hence 4640 can befound with the inverse ft
plane wave

464 ad eiko e Ear
ymodulatedby Gaussian
L

as god widens smaller a 464 narrows
since guy cannotgotoinfinity so cannot be measuredprecisely

This implies the uncertainty principle For a Gaussian wavepacket
it can beshown that ox fr Op Ear ox op I

for general wavefunctions Ox Op 7 HE

the Gaussian wave packet has minimum uncertainty
in 30 each dimension has its own uncertainty relation
i e orthogonal quantities can be measured precisely

Time evolution of wave packetswww

For a wavefunction that is highly localised
in k space we can use a firstorder

approx to thedispersion relation to line
understand propagation
let K ko tf k
46Gt fatff gchleilk Mdk

tryFogckleilfkx
fat Jdk

carrier envelope
w k x w ko t dayIkosk far Vg f k

y CocH eikoGe VpHfGc ugt
In reality thecurvature of the dispersion relation over the
wavepacket's spectralrange may cause the wave to spreadout
For a Gaussian wavepacket with constantspectral function

gCK Cif
4
e
ACKKolya

use a quadratic approx to the dispersion relation
WCk Wo thkfn 8k thangKP
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HGHF EI cage thegang exp Cthkot
ca th44m44

normalisedforall time e GIMLI
thecentre of the packet Cat x hKotlm travels at Vg
the spread of the packet increases with time
we can alternatively derive the spreading using the
uncertainty principle
xCH I o t v t set Oscott v tf

xp Kok t th t12m00cm

Momentumrepresentationmun
i Rather than using gurl we can write everything more elegantly
in terms of momentum directly
Ubc H Iz IF g k eilkx at du

tuff g lKiHei Cdk
Y la tf Fattfo OcpHe M't d k

and dLxH truthfulNICKHe ip4bdoc
Thus the momentum repr is the FT of theposition repr
this hides thecomplications arising fromthe dispersion relation
Each representation carries complete information about thestate

Schrodinger's Equation

For a general wavefunction Y f gckle
K WHdk

taking partial derivatives results in a wave equation
Schrodinger's equation it 2 2h1m Y VK.HU

This can be interpreted in the context of operators which
correspond to measurements being taken
E if It is the total energy
p it 0 is the momentum operator
Em I Enno is the KE operator

The Hamiltonian operator is equal tothe total energy
we oftenassume rt is linear

fy RIM t fLoc t and has notimedependence

In the time independent case we can view the Schrodinger equation
as an eigenvalue equation A y EAT scalar

generally the eigenvalues of an operator are the possible
values that might bereturned by an experiment

Probabilitycurrentm

If the probability of a particle existing in one region decreases

it must increase elsewhere

This can be modeled as the flux of a probability current J
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it Iff P du fu MAY LAY Uav

Info 4 re UNDdu
he
Im 0414K 4 14 a v

s

Itfu PCE Adv ICE H DE
Conservation of probability implies 2ft t 0 I o

I can be written succinctly in terms of pi if 0

ICE A RLY Imre

Unbound particlesmurmur

The time independent Schrodinger equation implies wave behaviour

II III E HY Ya D Aexplickx att
with K F

if E V the solution is a travelling wave with real
wavenumber and well defined momentum
if E LV K ik and thesolution is evanescent with
Usc H Ae k

e
int etk notphysical

A plane wave requires IAI 0 to normalise but this is
because it assumes an infinitenumber of particles Hence
we typically analyse either wavepackets or unbound
particles in a potential landscape
To solve the TISE we apply appropriate 8Cs

4 finite and continuous
241am finite and continuous
if V a 4 0 and 0412x may be discontinuous

For a plane wave the probability current is J KIM IAI

VIE
e g Potential step in

Energy same on both sides 7C 3

so a constant

r kh I T probability
K t k z

J IArithm I IAt 12them
flux

If F CV for a potentialstep the probability flux
is completely reflected althoughthere is a nonzero chance
of finding the particle in the barrier
For a barrier of finite width it is possible forthere to be
flux onthe far side quantum tunnelling There are
resonances when Ka hit resulting in perfect transmission
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exponential T n

NII liftdistanceT quadratically
Tunnelling is what allows a particlesto escape the nucleus
during radioactive decay The rate of escape depends
exponentially on the KE of the particle

Bound particles
When a particle is bound the solutions of Schrodinger's
equation form a set discrete states

n

for an infinite square well of depth Vo the µparticle can only mist in boundStates no
8 Cs K that En Vos HIERZima
n is the quantum number specifying a state
the particle cannot be stationary so there is a

zero pointenergy corresponding to n 4
The wavefunctions are the eigenfunctions of the
Hamiltonian A 4 EU with eigenvalues E

because of the confinement we have discrete En Un
the normalised wavefunctions are orthonormal

Va
Finitesquarewette
For Eso there is a continuous range feetof unbound solutions
for v LE Lo boundstates exist

Asian
We fit a solution of the form
Thisgives rise to two classes of solution
1 Odd within well ki OtcKE K from U Y
2 Even within well K tan Kia K 8 Cs
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u these must besolved graphically Sus K KE Y 7

a Iii ian
plot e g Xtant for the even x

solutions and find intersections to
small Vo

energies1probabilities then depend on X and Y
Characteristics of thesolutions can bederived from the graph
thegroundstate is even
states alternate between even and odd
always at least one boundstate no matter how small
Vo the minimumenergy bound state is even

QuantumHarmonicoscillatrum
Many real potentials can be modelled as locally quadratic
Classically we can write such a potential as UH mouse

Using the TISE 22
2mqE

M 2
4 0

let q xfmf E FEW

sub X Cq Hod 4Cgrew
22 41 E 94741 0

Far away from the well as Igf Scs we have Xa e
942

we can assume a solution of the form XCqI HCq e 942

2 91 293 91 t G AHH to Heremgintettion

the Hermite polynomials can be generatedwiththe
Rodrigues formula Hnlg C Metadnan e 97
the energy eigenvalues are then En CntE hw
with associated eigenfunction

Yn64 ftp.ynhnlxfm e mEhx2

the solutions are orthonormal

The correspondence principle2

In the limit of large quantum numbers QM tends

to classical mechanics
eg the infinite square well can be modelled as

464 einNa te inna Sbc top hat
in momentumspace this is twodeltas
convolvedwith sine byFIT
as n increases thesines tend todeltas
i e the particle is eithermoving left or
right with a perfectlyspecified momentum classical case
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The potential energy of a diatomic molecule can be modelled as
a harmonic oscillator with a reducedmass µ mmim.fm

The excitation of a state is governed by the Boltzmann disti
Pn x e BEn

p Iot En CntE tu
for the normalised distribution
E Chtz Aw e

CntII bup

e touts

geometricseries
c

evaluate

LE It w t planckdistribution

The vibrational heatcapacity of N diatomic molecules is
given by Curb N Mat This tends tothe classical
limit as T scs

Operator Algebra
An element in a vector space can be written as a Ket vector
Ias This can be used to represent e g column vector matrix
function etc
For every Ket vector there is a unique bravector Cbl
which exists in the dual space for matrices the brais
the conjugate transpose of the Kett
The innerproduct returns a complex number

Lal D c Cb la
vectors are orthogonal it alto o

the norm of a vector is Cata 2

in an orthonormal vector space Lan I am Fnm
vectors can be written as linear combinations of basisvectors

1 a an Ian
functions must be square integrable to have a
series representation of the form next EI anUnCa
basis functions depend on boundary conditions
for thisto be true for any la the basissetmust be
complete i e ElankanltT
to findthe coefficients we exploit orthonomality eg
the nth coefficient is given by an 44m14
this is equivalentto projecting 143 onto a basis vector
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For a continuous vectorspace 464 1 0CHICKHdkin
needed for unbound particles weighting batisfunction

the orthogonality condition is
SIX ki x X Ks a doc SCka KD

the completeness relation
9 X CK sdX Ckusddx 8Cx xd

this is satisfied for X Kix trite ik giving the
FourierTransform

Operators map between two vectors 10 Al YS
the outer product of two vectors I b Cal is an

operator
operators are distributive Atf Ias Alas 8lb

The commutator of two operators describes thedegree to
which two operators commute A 8 AE FA
An operator may be represented in a given basis

Ala IAI 1a Em lunkantAlumKumla
TE TE

suntAlum is just a complex number which we

write as Anm These are the matrix elements of A
i e project 1as ontobasis turn

A Em Anm Un Um operate on theprojection then
reconstruct

for square integrable functions Anm fun Attndoc

Any operator of the form D 14h41 is a flatprojection operator projecting theoperand onto 1

flag IN
the vector IV

An operator A maps kets to kets The corresponding
operator in dual space ie mapping the 6rad is the
adjoint of A At

defined by Lum lAlun Un1Atl um kn m
the matrix elements can be found with the conjugate
transpose
for an operation AND103 the dual is LY IAtt401
to compose adjoints CA f t Etat
every linear operator has a unique adjoint

Hermitian operatorswww

A self adjoint Hermitian operator satisfies At A
the act of measuring a physical quantity in QM is
represented by a Hermitian operator
hence the expected values are real

A CYIAN CHIA'the f A
Observable Hermitian

It is easy to show p is Hermitian with BP so pm is
also Hermitian and real VG A is Hermitian
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For a composite operator Af to be Hermitian A and
B must be Hermitian and commute
if they do not commute we can use the anti commutator
to construct an operator that commutes

AT Aon to A
E AE3 is then Hermitian if A and E are

the commutator is not an observable but can be made
so by multiplying with i

Eigenstates eigenvahenyeigenvector
the eigenvector relationship is Alans amnlan aakghenstate

Eigenvectors form a complete orthogonal basis set If we

represent an operator in the eigenbasis it is in its
diagonal form A Em am I am cam

Hermitian operators have real eigenvalues
consider two eigenvectors land Ian

amlAlan CanI At1am
ansamlan antiLam lan Cam a Cam Ian o

if n m we musthave an an
otherwise Lamlan 0 so eigenvectors corresponding
to distinct eigenvalues are orthogonal

It can beshown that the eigenvectors form a complete
set i e l 4 En Cnl an

Eigenvectors with the same eigenvalue correspond to
degenerate states Any linear combination ofdegenerate
States is also an eigenstate
The expected value of an operator on an eigenstate is

just the eigenvalue
Once an observable is measured the wavefunction
collapses randomly to one of the eigenfunctions of
the observable Hence a second measurement is certain
For a generalstate 147 the expected value of F is
A LY IAI Y S E Cn LY lAlan by completeness

E Cn an 241an eigenvector

sit E an 1Cnp Fourier trick
agrees withthe special case where Ms is an eigenstate
i e probability ofcollapsing to a certain eigenfunction
depends on thateigenfunction's coefficient in
the expansion
this easily extends to continuous basis sets

Thestate vector IVCH evolves in time
according to Schrodinger's equation A
measurement collapses WICH to the
eigenstate of theoperator withprobability
1LYCH1On 12 If a different measurement
is made IN will collapse to one of thatoperator's eigenstates
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Compatibility of observablesmmmm

If two observables commute they are compatible i e they
can both be measured to perfectprecision
let A 8 be twocommuting operators
assume A hasdistinct eigenvalues
ATIan FAIan an Blan

ACTland anConlan 8 Ian is an eigenstate
but since Glan has the same eigenvalue as lans
we must have Elan x Ian bulan
hence Ian is an eigenstate of both A and 8
so each gives a precise measurement regardless of the
order

Both the energy and momentum of a plane wave e
ik

can be measured precisely since e
ik is an eigenfunction

of both p and t and A f on

Generaliseduncertairity

Any incompatible pair of observables will have an uncertainty
relation
Define And A LA AT Ad
and likewise 6812 Bot
for a generalstate 14 consider 107 Ad t it 8D ht
the norm of this vector mustbe positive

0107 LUKA'd i d Andtinted 147
AR t I lo 8 2 t X i Ad Rd 20

i Aa Fa is Hermitian so LiCAI Tap is real
Aa Bd CA 8 by expanding

we can find the tightest bound by minimising w r t X
LQ I min must still be 30

Otto Ki Choy I
tortseafoof

the minimum uncertainty state for any two operators
is when 2011017 0 i e Ad t it odd IV 0

e g for E and D
C Id ti 7Rd 147 0

x x till it Ex LPD Ucsd O

2 f fD ticffJucx
I solving this differential equationgives the min uncertainty
state in this case the Gaussian warepacket

464 e
Csc 0071257 ei path

ox and op can be calculated from thestandard
expressions 1EURxYdx and fine EiZanedoc
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Ladder operatorsmmmm

The Q HO is A Imf ME I Introduce the operator
and its Hermitian conjugate It

a FET I ti
w
B hat FIFI i EE f

it can be shown that Cd It I
the Hamiltonian can be expressed in terms of a

A Aw Ita t E talaat

Consider an eigenstate 10 of A such that It 10 El
we can then show that

A I10 CE hiya 107
A art10 E that antI 07

It is the creation raising operator because it
increases the energy of the system by a quantum
an is the annihalation lowering operator

They both constitute ladder operators
Itt On IOnt oil0ns LOn D

rata is an observable called the numberoperator N
A twin tf
it measures thenumber of quantum excitations Cegphotons
i e the number of unique times a photon can be
removed then replaced

The groundstate is such that I 10 lo i e the
lowering sequence mustterminate with E Katz
all states can then be generated 10nsFatt 1005
the associatedenergies are nh wthE.IOn is an eigenstate of both A and N with eigenvalues

F and n Ethw I respectively Thus one quantity
determines theother with zero uncertainty

Aton En lOn with En htt ha
We can normalise as follows
oil On on 10mi On1antalons KukOmiLdn D
so if I Ion D is normalised Cn ah

I 10n rn 1On i
and likewise It 14h Intl 10mi
a general state is thus given as 10ns CITItold

The different numberstates form an orthogonal complete
set so arbitrarystates can be repr as a LC
We can explicitly find the form of the ground state
100 o faff It i yup tooCx

Good Eff
4
e
masc425 thinimismaunartaing

state

higher orderStates can be generated recursively

giving the Hermite polynomials as before
For the numberstates of the QUO Oxo p htt h
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Thedensityoperatoir
the density operator allows us to describe a classical ensemble
of quantum states
The expectation of an operator can be written as a trace

A 441AM Tr AND it isjusta number

A Tr Aly cry TRAP Trott

if A is Hermitian this is real so A Tramell AT
In an ensemble each member may exist in one of M states
each with probability Pi Theclassical expectation is

A I Pil Yi IAMi 7pi Tr Nikita
Tr ET PilUi Creil A

this defines the density operator

GEEPilUi at it A Tr A

8 is Hermitian so is an observable
idempotent whenonly one classical state ispresentgi e 0 8 for 8 14 754 1 pure state
Tr of l is a normalisation condition

Quantum states mustbe added coherently i e including

the phase 14 eiO th t e i 2 hey

However for a classical mixedstate there is no phase
term 14 all P I old t Blitz old

Functionsofoperatori
Thefunction of an operator is defined to be the powerseries
of the function with the variable replacedby the operator

e I I I t E E t

If the operator I is expressed in diagonal form powers
are just related to scalar powers of the eigenvalues
I foci Hi at it In Xin l Ui at it

FCR Exit he it
must be

my eigenbasis

i e FCK has the same eigenvectors buteigenvalues Fail
which is obvious since the eigenvalues are measured values
this analysis applies to an arbitrary state 101 as long
as we are in the eigenbasis
In a classical thermodynamic system energy state are distributed
with pdf tze

En 1kt where Z normalises

the density operator is then

Se En1kt fyn off Iz e
MKT

2 Tote Alky

where for a QUO A 102 EnlOnt En htt Fw 10h
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Theexpectedenergy for a thermalstate c i e cdhkaf.ie

Tr Cori ttrn.EEn oeEnlkTl0nKilnlEml0mk0mDZ

tzTrLEno En e
En 1kt

the normalisation can be explicitly calculated using

e Cnt'zH4kT I 2sinhft.IE

e talkie
agrees with andy j

E Far t
1

of correspondence
principle

Commutation relationsmmmm

It is easy to show I pin it npn itIppm
p In ihnen in Zz In

We can the generalise to functions of the operators

I Fcp I if 2FCP
of mustpreserve

p ftp.ID ih OFCP i order
25C

i e CA FCAD no intuitively obvious
Useful formula AB CT A B C t CACTB

CA 84 8 Acc t CAOT C

Time dependent QM
Time is a parameter in QM we never integrate to
find the probability that an event occurred in some time period
A general state can be written as the LC of eigenstates
of A LYCH E CnCHlOn Since the eigenvectors
are a complete basis for any t the eigenvectors do not change
with time
The timedependent Schrodingerequation TOSE is

it It tuts A HAD
we then sub the LC of eigenstates givenby TISE
it EndCantillon CnCHA10ns

i it DIII CrCAEn O th

this ODE can besolved for Cnut to give
UCH Cinco e

Entth IOng

ie time dependence is associated with a superposition
of frequency components whose phase changes over time
if there is only one freq component 14Gt is a stationary state
Inthe above formula we have a LC of eigenvectors with
weights that are functions of theeigenvalues of A

Robert Andrew Martin



This can be rewritten using the definition of a

function of an operator

144 e I47th EnCn o 10ns

I UCH e Atta 14cg
we can thus relate the current state to an earlier
state using the time shift operator

wit tog e iAHHH INCH lift tolullto

it is unitary so its adjoint equals its inverse
Un preserves inner products and therefore normalisation

Cu A 0 so eigenstates of it are energy eigenstates

Ehrenfest's theorem
www

It does not make sense to consider the timederivative of
an observable only that of its expectation
d
yA dat full AND Laff1AM tall Aloft t PII

ith f AYIANS t ith LY IAIAU t FAI
Ia Ul AAAA7 t MET

dean Ia CA AD t f AI
in theSchrodinger approach to QM observables are time indep

if A commutes with A CAT is invariant
in a stationary state CA is invariant for any A

However Ehrenfest's theorem is not useful for actually
calculating the coefficients

UCH o e
iEntth fcfn

SUCH I Emcnkojeif

mtitcomli.LAcmkcne.itEm Ed t Iti Amn
0mLATOn

Consider a particle moving in a potential
7 f SICA ID A Em visit

pi I Iihf Cf si si so

defy HI oi Am classically

deputy Lich ifsweet oh dtd

diff FCI i e NI is a consequence
of Q M

fad FUN only when the QM uncertainties
are small compared to the scale of the system
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Timeenergyuncertaintism
The time energy uncertainty principle is fundamentally of
different character to x p uncertainty
from the generalised uncertainty principle

from
8 EDA 7 El Lich A I Eh IdlaII Ehrenfest

c OE DAHLIA Iz
ty an be ithis quanti nterpeted as the ot required

for the expectation value to change by an amount
equal to the uncertainty OE Ot Ez

otisnotanuncertaintigm
For small OE it takes the particle a long time to
significantly change the value of an observable
For a stationary state of as so CAS is constant

Heisenbergisapproach
Thus far we have used the Schrodinger approach in which

state vectors evolve butobservables candeigenstates don't
The Heisenberg approach treats operators as time dependent

heat e in Htlvcop
ACH LYCHIA1pct cycogleihittAne int't IM

Hence theexpectation can be written in terms of the
timedependent operator A'Hct

Act 7 24071AH1461 AHCA eiAHtA e AHA

The Heisenberg equation is the equivalent of the TOSE

it daII A rt
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QM in 30
for a wavefunction in 30 we have PCE NICE Hide
Operators become vectoroperators e.g D it 0 as

do eigenvalues
Position and momentum in orthogonaldirections commute and
can thus be measured precisely Ej pin itsSjk
Numerical methods are oftenused to solve the Schrodinger
equation in sphericalcoordinates

orbitalangularmomentumm.tn o ambiguity
y

LI TPI IB since
orthogony

Exp Icty Ey EPI EPI components

Px Py Pz Lz I pry gpI commute

The 30angular momentum operator is observable ie I It
Too Ty itsLz and cyclicperms so only one component
of E can be measured precisely typically 27
The total angular momentum is E LI t LI't LI

E ti 8 so measuring any component is
equivalent to measuring E
i e only L and one of Lx Ly he can be precisely known

The ladder operators for z are

it Ext ily
LI ily

they are dearly not observable
useful commutation relation
Ez I t It LI LI Iz th It

consider an eigenstate I a of Lz with eigenvalue
th where h is a real number If we apply
the ladder then measure Iz

Iz Il On tilts Itt Ola
LIE 10x x ht E 10x

hence Lz is being changed in units of k and

measurements of Lz are quantised
However It does not change the magnitude of the
total angular momentum
10ns is also an eigenstate of I since E and Iz
commute I 1 1 At 404
I Etf o ELI 10ns AhtI 104 ie

the eigenvalue is unchanged even after operating LI
but we musthave Liz e SE so xZA
hence unlike It and I angular momentum ladders
have a max and min
hence x can take integervalues Cbecauseofsymmetry
indexedby ML L L l L 2 O Ct Il L
there are Utt eigenvalues including G O
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the value of L depends on x which depends on
the eigenvalue At of the total momentum operator
the explicit relation is derived by considering the
highesteigenstate such that Iz IOes Lt told
but I 1 5 0 to terminate the sequence
consider Eet E E iz ti Iz and operate on

the highest eigenstate o th 2 ahh Chi
A Luth

L is called the orbital angular momentum quantum
number and relates to the total La
mo E L L l 0 L is the azimuthalImagnetic angular
momentum quantum number and relates to a

measurement of Ez
summary I'll me UGH hill MD

LI Kim me k l LMD

Normalisation constants can be found
I Il mD Cll me is using LIE I
1444mi ill me D LL.me LIIl4mc

L I m ti th LI IE Il Mc
i.LI 4mD hlCLtH miCmct l4Mct I
the normalisation goes to zero for It when MEIL
necessary to terminate the sequence

Because angular momentum is quantised so is themagnetic
dipole moment for a classical electron orbit TK AE

plz IA Env Tri Ene Lz
but Liz Moti Mz Eine mi
pro fame is the 8ohm magneton revealing that

Mz Mo Mi so Nz is quantised

Orbitalangularmomentumeigenfunctions
The angularmomentum operator in spherical coordinates
is found by substituting p it 0 into ypz 2pg etc
the ladder operators are then te i0 Zo ticottIce

Because all the angular momentum operators depend solely
on 0 and 0 the eigenfunctions must be angular Yomilo 0

zY may itZoY metY
Yum Lo 01 Fi miCE eim0

since the wavefunction is singlevalued
Y4mito 0 2 it Ycmcc0,0 ei me I

this explains why mi must be integers
It acting on the highest eigenstate MEC mustgive zero

It 44 0 Aei Ea ticotoEo Yucca 01 0

using 4440,01 Fi close Yodo using teilo
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I lowers the eigenstate so we can find Yumi 110,01
GimYi mi i lo 0 t eMf Zoticotffy Yum Gol
sub Yi mi ice 01 Fi mo i f e cm 0

these eigenfunctions can then be normalised overall
angles fo fo l Yumi lo 011 sinodoDO L

The orthonormal eigenfunctions thatsatisfy the relationships
are spherical harmonics
e g Yz z x since e Ezio

find by LI144 0

Y 2 Il L sinecoso et IO

bio x 3cgza

apply lowering
operator

they have usefulsymmetries e g

Yl Milo0 C Hm Yum Gol Yi m CQ T O

Diatomicmolecuter
The energy levels depend on angular momentum eigenvalues
but specificdependence differs by system
For a rigid diatomic molecule E II w EE
Hence the energy eigenvalues are

EE Uz th with degeneracy 2h

The heat capacity of a quantum system is
K 7 There

is thus a rotational contribution to the heatcapacity
rot 0 as T 50 and Got R as 1 a

Orbits with potentialswww

The Hamiltonian in spherical coordinates can be written in
terms of E

A III Frfr II Empt Url
the eigenfunctions have the same angulardependence as
before but there is now radial behaviour
Un 4mi rio 0 Rn cCr Yi mi fo 0

the radial eigenfunctions Rn Lcr depend on n the
principal quantum number
States with the same n l but different mi are energy
degenerate

AUn l M En iUn4mi After operating we can divide
ut Yumda lo and substitute Un Lcr r Rn Ir

FIEL tf Url Uni Enn Uni

this is the 90 T I SE except the effective potential
is now Vcr t n

For a hydrogen like atom there is a central potential
r E eor Substituting intothe eigenfunction equation

III 1 Er xyun.i o yuoithtfitof.ie
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in the limit of large r Un LL e
kn

for small r Un l X r't
hence we guess a solution Un if Gcr rule Kr

which gives the associated Laguerre equation

f 2 tutti Kr t CA 2K LHD6 0

This can be solved with a powerseries GCN Care

Cq Cq 2K qtl I A
H 9 24 11

in order to prevent exponential behaviour we
must terminate the series at some q p
2K CptLH A D Atk is an integer
it turns out that Ark n is the principal quantum
number
p n CHI and pyo 130 Lent and n I

n LH

Rn c or E Cqrattle 7in
9 0

The energy levels are given by
A 2FzE eo K2 Zhf.EE 4772 n

En I II In go 4th is the
zm me Bohr radius

energy only depends on n not L
of Mt due to

the degeneracy of state n is 2 Lil 292 spin

Spin
thatI enteitrasteinetica

is quantised
non uniform field so particle feels force

beam S

depending on dipolemoment Fz H plz285
hence position on screen is related to Lz
thescreen showed a discrete distribution

However ratherthan seeing an odd number of beams
corresponding to the 241 possible values of Mc some

experiments showed an even range
this implies L is half integer which cannot be due to
orbital angular momentum
so we attribute it to spin an intrinsic angular
momentum unrelated to spatial motion

It is assumed that the spin operator works the same way as
the orbital angular momentum operator

I IE t II KE
SI Sj itSI and cyclicperms
5 is compatible with 5z eigenvalues are sCstDH and
Mst respectively with stl possible values of Ms

Ms S Stl S l s
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The electron is a spin half particle so can have spin angular
momentum Ez for the spin upIdown states
the total spin angular momentum is Ft b If b
it is convention to write the eigenstates as

5 IT E IT E It E Ids
anyspinstate is a superposition IX c IT tell

The anticommutator of two operators is A E AF toA
for electrons Si I Effi
this allows us to derive the commutation relations
and eigenvalues

we define spin ladder operators E I if
SI Is Ms h sGtDmsTmsI IS Ms I I

SI SI
10 It IT to

5 5
using SI III SI ITS EHs 5 14 E ITS
similarly Is IT its ID 5g It IIIT
this can be used to find eigenstates of SI and Sj

Because 1T is an eigenstate of SI and 57 there is
no uncertainty in a measurement

But SI and SI are incompatible with SI Osx Sy HI
So knowing that we are spin upldown does notgive info
about se y components

Total angular momentumwww

The total angular momentum I is given by I It
Spin is not described by the timespace wavefunction of
a particle it is a result of additional degrees of freedom
in the Dirac equation relativistic

14 I E t IS
I only acts on the ISS portion while I only
acts on Iran t

n n
Since components of f commute with components of f we

have Foo Fy it Fz and cyclic permutations
JI and F1 are compatible with eigenvalues Mj k
and j G tht respectively

Mj takes one of 2J t1 values
Byvector addition jmax Lts jmin I l s 1
the possible js are integer steps betweenjmin andjma
for each value of j we have 2jH values of mj r

for a spin half system there are only tw possible values
of j so 21241 totalStates

In general a particular orbital state can be written as

Him s m
C4mi s MsHumo 0,0 Is Ms

all the state are orthogonal useful
CL mi s m are the Clebsch Gordon coefficients
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Different states can be generated by using the total
angular momentum ladder JI LI t 5

can be visualised on a lattice j 3
for a given j starting
from the highest eigenstate 5 Ifwe can generate all other II
States with F L 4

JIL's m tjjttmms.IT l's my ID
to find the coefficients in the highesteigenstate for
a lower j we cannot use F However orthogonality

may be used to write it down

Two particlesysteimm
In a Ne atom there are two electrons which can each be

spin up or spindown
we characterise the states in terms of the totalspin sz and
the total 2 component Mz i e l XSz Mz
For a pair of electrons the higheststate is IX D IT ill a
otherstates can be foundwith ladders I SI I
IXSzMz Ts szt IXsz.me l

I t lxsz.me

l Xi D IX i o IX i are the triplet states

IX D IT IT z HiD till Hilth HT it d IX D Its Its
met

Ms I Ms_Iz MEE

j MEO 2 I

t m.it ms tz
Mz I

the triplet state are symmetric if theparticles are interchanged

Holo is an antisymmetric singlet
state MEE

Hop L H it z 177142 ma E
2

A photon is a spin one particle It is thus able to
impart its angularmomentum to an electron to shange
it from spin up to spin down
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Matrix Mechanics

Heisenberg's matrix mechanics represents states by column
vectors and operators by square matrices It is especially
effective when studying discrete systems with ten states
For a given basis set the matrix elements of an

operator A are given by Amn Colm IA10ns
the operator can be reconstructed from elements using

A Eun Amn10m74OnI
if 10ns are eigenstates Amn 7h8mn diagonal

Two level systemswww

Matrix mechanics is suitable for two level systems leg qubits
Consider a double potential well
e.g in a diatomic molecule

the individual wells would
each obey an eigenvalue equation

g gth10 Eni 10
Hit02 Ez 10g lowestenergyStates whenisolated

To find the new eigenvalue equation we form a basis
consisting of l Oti7,102 3 hybridisation

we approximate as only needing 10 I 027

for relatively isolated systems to Eb Ed

However a particle may tunnell between basis states so the
total Hamiltonian it must include coupling terms

A E E 2 49141027

diagonalise to find eigenstates

I F II Innl 0 7 ICE tfztTEE.EE
For two identical wells 7 E t let

in Id lol told
the lowereigenstate is symmetric
corresponds to bonding

higher eigenstate is repulsion

if the two wellseach had an electron both occupy the lower
state reducing energy by 21Tl This is a covalentbond

Consider the case with E LEz and assume the
coupling factor is small i.ee E 8 4
the energy levels become
7 E Ea Ei 82 Ei O o is positive
It Ez t Ei Ei 82 Ez t 0

using ful 141 tell tf lolz

I it 810,711027

if bothwellshadelectrons energy could be
lowered bymoving to E 0 ionic bonding
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Multiparticle systems

the hydrogen atom is effectively a one particle system because
we treat the proton as stationary
For a true two particle system the
state depends on both positions
Hab Xtra Ib t
the distribution of positions is now a

joint pdf pleaEb 141 dEad I
For separable States YCEa Eb H UacEarlsCrt
Pa f Papo so the twoparticles behave independently
interms of abstract vectors Ma D I Ya 1465 i e the
Cartesian product of Ma and Into which is a Ket
in higherdimensional space
Ha b is normalised if both Mlas and 1465 are

Any twoparticle state can be expanded in termsofm µ ofTeparable basis vectors pya EnCmnlamyanT these

1am is a complete basis for measurements on a and
Ibn is a complete basis for measurements on 6

QM postulates that 1am 16ns is a complete basis

for measurements on thesystem

These principles apply to N particles but the number
of basis states grows exponentially
For a separable state measurements do notinterfere Consider

two observables relating to a and 6 respectively
OaOo 461Lula Ida Olya 146

4461QIUD LUalda l Ya a Lb
For an entangled state measurement on one subsystem

may change the outcome of a measurement on the other
an example is 14am la 162 t ta z 16D forwhich
there is maximal uncertainty aboutwhich particle is where
plain state 19 and 6 in Ibd 14621La l 12 42
pl a instate lad and 6 in lb 7 Cb Karl 14712 42

However operators still only act on their relevantwavefunction
dependence e g f a it Pa it Hosea fya Iza
the commutationrelations for a single particle are the
same i e Ia Bea LJa pya Ia Aza it

however the cross terms commute CRI PI
Ea ED 0

but measurements on a still affect the outcome of b
The Hamiltonian forthe system is A IImatzAIm t VYEa Eb

V includes both theexternal fields and the interactions
if V is only a function ofseparation the problem simplifies
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Interactions
rn

the total momentum operator is f Ratto
each component of commutes with any component of

the relative position E Ia Io
hence I commutes with VCA
I also commutes with pia pI Ehrenfest's

theorem
hence I commutes with VT and is thus conserved

The position of the Com is A Ma ka t Mo I b
Mat Mb

it can be shown that B A it Fumio

hence dfeIf CPI as expected
M M Mat Mb

We may wish to express the Hamiltonian as the sum of a Com

part and internalpart i e in terms of B CxY H
k Eb Ea CK y Z

II it Zxa it ExaExtExaEB
Iam Zx Zx

this gives I corresponding to the GM and Rr associated
with the relative motion of a and f

fa thanpi Ir Io MtmE fr
we can compute PI PI togive the overall Hamiltonian
D IIM t IIM Jcr assuming V only

tune ofseparation
Com L betweenreduced mass

The wavefunction can betransformed to the new coordinate
system Aam t Ar UCE El EVE e

if V is only a function of separation the equation separates
EmP2p UCE EconUCE free particle
C Eap 07 Vcr uch Er ucr sphericalharmonicetc

the overall wavefunction is explicit RHD Yn much
Translationally it acts as a single composite free particle
Vibration as if one particleof mass µ is moving in a central Vcr
Rotation same as a rigidrotor at fixeddistancefrom origin

N identical particlesmmmm

The many particle Schrodinger equation is In You En Yn
The N particle Hamiltonian must be invariant to swapping
identical particles This leads to exchange degeneracies
An E H E fi E's En i f fi Rj An

H E Ij Ei En i f fj Ri An
in fact identical particles may be defined as thosewhich
are exchange symmetric under all possible observables
it is convention to write You E Yl Si G where Si
encodes the dynamical variables of particle i
identical particles thus obey ACsi S ALS Si for all Ai

Classically identical particlesmay still be distinguished from
one another WE Ed e e
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we could track trajectories as they move and thus find
YCE th a MIZ Ei a

but in QM this doesn't work It is not possible
to say which particle has beendetected
the states are the same 14Cra Ell INE Hl
different tosaying that ACsi Sj ACE Sit

Exchangesymmetries
Given the indistinguishability of states there are twopossible
exchange symmetries This has a physical meaning
I UCra Ell LHE IdT UCA E IN E E

From the perspective of state vectors an N particle basis set
is represented by the Hartree product IX l Xz l X n

each His is a set of quantum numbers for particle
basis set because all possible outcomes are contained

Eg for a two particle spinsystem a possible basisset is
11471 5 1171427 1417117 Hi ITS

butdue to indistinguishability the middle two should be
physically identical We thus construct two new slates
thatshow exchange symmetry result is same as He eigenstates

Is fz IT Its t Idi HD Ias Ifl HI Hi HD
IT Hrs fz Is It Ias HDHz tells Ias

so we have a new basis 147147 Iss Ias 1141453

this basis has the same number of degrees of freedom

even though we eliminated one using identical particles
Is and Ias correspond to two fundamentally
different kinds of particle

the new basis hasmaximum uncertainty about which particle
we find in which state

Bosons are exchangesymmetric i e 4th Ed 4 Cair
Fermions are exchange antisymmetric ie 4th Ed 4Cair
The symmetrisation postulate states that N identical
particles are either exchangesymmetric or exchange antisymmetric
there are no mixed states and bosons1fermions are
fundamentally different objects

In the two particle spinsystem Cie Hel 17514 and kilts
correspond to two bosons in the same state But no antisymmetric
wavefunction permits twoparticlesto be in the same state
The Pauli Exclusion Principle states that no two identical fermions
can be in the same state Cie share quantumnumbers
The spin statistics theorem relates particle spin to exchange
symmetry Half integer spin fermions integerspin bosons
Bosonsobey Bose Einstein statistics

unbounded j is a particular Ij deiblat 1
quantum state z

fermionsobey Fermi Dirac statistics ng eag.ba
less than unity
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Multi particle exchangemum

In a general system of N particles let a given state r

of particle i be denoted by 1Sir
Hail particles are identical a suitable basis is

IS a I g
r I 523

terms with r s have an exchange symmetry but terms
for which rts do not
157 15515 1527 F 157 15915 157
but these should be indistinguishable so as with the
two particle spin system we must symmetrise it

To do this we combine all possible permutations then
renormalise the resulting vector

s I

I ai r Z Tff Sperm I 59 155 IETItnMn
exchange symmetric vector counts permutations with repeafedements

thismust be done for each a r z combination

We can also form antisymmetric states when a r z are

all different These correspond to arrangements of fermions

1a r 25 Sperm Sgnlp 159 155 1927
Both thesymmetric andantisymmetric states are needed

to form the new basis

e g 3 particles each with 3 states
ie 1591194159 with a 6 c E El 2,33
ITit it is symmetric but It t 25 isn't
Symmetrise IT 1,2 s IT 42 t 17,2 I t 12,9 95J
Now I 1,1 2 s 17,2 7 S 12,9 7 s

There is only one antisymmetricstate
11,23 a

17,43 IT 3,2 t1213,17 t 13,2 1

the antisymmetric states can also be represented as the
Slaterdeterminant in Nt I l j
because detA Ei in Ali anin
swapping columns corresponds to swapping particles so

the sign changes as required

All N fermions existin differentstates but at sufficiently low
temperatures the bosons can all be in the same state
this is called a Bose Einstein condensate
the state vector is 15 I S's IG's
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