
 

Hilbert Space
Mathematical formalism

QM exists in Hilbertspace a vector space H over

the field
commutative 4 0 0 4
associative Htc txt 4 0 TX

exists
identity unique7 o C H s t 4 0 4

scalar multiplication distributive
H is equipped with an inner product C 71 71 a

conjugate symmetry 0 4 CY It
linear in 2nd arg 0 anti BX acct 4 tbc0,217

positive definite 4,4130 with equality if 7 0

The norm of a state is 11411 0,47 and the
Cauchy Schwarz inequality holds 1 COVITE 10,0 YY
An orthonormal set 0 On forms a basis of
an n dim Hilbert space if NEH can nbe uniquely
expressed as a LC of basis vectors ht Ca Oa
coefficients can be determined by dotting with a
particular basis vector cm Om EcnOn

Finitedimensional Hilbertspaces are isomorphic to Q and
their inner product is the standard cut E EE Uit ni
Space of squareintegrable functions E Sp1412doc co
is an co dim Hilbert space with Col 4 Sp 0 4doc

functionsDual spacesnvm T
The dual 71 of H is the space of linear maps
from It
i e y E H defines a map 4 U ECU for
every YEH
we can construct a map with the innerproduct
0 7 EH because CO 4 7 CO HE forahYEH
in fact any linear map y H E can be
written as 40 a for some 0 EH
implies an isomorphism 71 EH
i e every linear map is also an abstractvector

If V E H it is a Ket IV else if MEH it
is a bra 441
the innerproduct is lol 145
a general Ket can be expanded he Ya led
given some orthonormal basis set tea 3
Lx ly Xiotyaleoleas Ea Xatya

Can combine Hilbert spaces for more complex systems
let lead and Ifa be bases for H Hz
IV EH 7h 14 can tea Ifa
the inner product is defined on basis elements

intuitively
Leal Cfa1 Cleo Ifp Leales Cfa Ifp
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continuwmstate.sn
In functionspace we can have a continuum basis

la a e RI i

Laila flat a
the expansion is he full alla da

A keyexample is the position basis Ix 3 a ER

IV Jp Xcx41 x doc and the coefficients are

club Sp XcxDLocbd docI y cod
i e position space wavefunctions are just coeffs
of ht in a particular basis

With this in mind we can express I in a diff
basis e g the momentum basis 145 5Icp Ip dp
We can now convert between bases Loup x e i0415

4 Cx Loc IV http CxIp dp F Icp
Icp Lpint Aka Lplx doc I F Hod

Formultiparticle continuum states ie combining 1043 GB
ht SappyCx y Ix ly dady

the inner product is 20149 5 6947 464y d3c
as notationalshorthand for a particle in R we write
14 SUCH l E dbc l E be ox ly Iz

Evensingle particle systems may require larger Hilbert space
if there is internal structure e g electrons have spin and
are thus bestdescribed by a pair of wavefunctions Yu

g

Operators
A linearoperator 7 I It satisfies

or A P 8 14 d Al U t P 8147
A 8 he A BIN c notnecessarilycommutative

The commutator quantifies the degree ofcommutation
A B A B BA
antisymmetry A 8 fo AT
linearity x AtPB c x A c tp CBC
Leibniz identity A Bc CA El Ct OCA I
Jacobi identity A 8,47 t CB CCADt GLAAD

Theoperator A maps kets to kets The adjoint At maps
bras to bras Lol I At 147 441 A 10

CAtoy Att et Capt 8TAt Atf _A
an operator is self adjoint Hermitian if At_A

for an operator A eigenstates eigenvalues are defined by
Aly are a E Q

in Dirac notation we often label an eigenstate by its
eigenvalue Alas a4aT eigenvalueeigenstate
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Hermitian operators have real eigenvalues
qLq1q q1Q1g Lg I Iq q Lqlq
eigenvectors with distinct eigenvalues are orthogonal

q 9429,1923 0 91 92 or 29219,2 0

The set of eigenstates of a Hermitian operator forms
an orthonormal basis for the operator Q EnEnIn snl
any state may be expanded in this Q exists in dualspace
basis 147 En Cn In

by orthonormality
operating is then simple
QIU En EnIn cm Emcmln CnqnIn

the identity operator is In In snl
a function of an operator is defined by
f Q flan In Cnl

An operator can be expressed as a matrix with elements
A km Kl Alm Operator composition is thenjust
matrix manipulation
Operators on L2 are linear differentialoperators

For compositesystems let tea be a basis for 7h A
and Ifa be a basis for Hz B Define A 8 by

A 8 tea Ifa 7 Alea 8 Ifa
tea Ifa automatically becomes orthonormal

an operator on only one space would be A 17h e g

for hydrogen H Raff Ie t Ip Fme IIe y xp
A In In 87 0 for all A B because
each acts on one of the Hilbertspaces only

Postulates of QMwww

Thestate of the system is specified by a nonzero 14 EH
Any complete set of orthogonal states 10 1023
has a l to 1 correspondence with the possible outcomes of
some measurement corresponding to
the prob of observing theoutcome 10ns is given

1LOn 14 12by the Born rule p ly 10ns
Onion 5414

in the case of orthonormal states this reduces to
Pl ly 10ns I can 14712

Observable quantities are represented by Hermitian operators

the expectation of Q in state 142 is
Q y LUI QIU Icy ly
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the uncertainty rms deviation of Q in state 147 is
OneQ lQ7x u

OneQ O iff U is an eigenstate
We can define an uncertainty principle for observables
A B Let MA AN CA rely and likewise for the
NhatKorea and Into11 0 8
LUA 14.7 LY I CA CANE 04147

LY I AB I W LAH By
Zit mulatto I CU I CA 87147
by Cauchy Schwarz IMA1111401131 ValVo I

OA yo Bre 3 I 14AM I
The Copenhagen interpretation is that the state collapses
to an eigenstate corresponding to theobservedeigenvalue
does not specify how1when collapse happens
applying Q to 147 is notthe same as measuring

The dynamical evolution of a quantum system is governed
by the time dependent Schrodinger equation CFOSE

it 37147 Htt

form of H depends on the system
It does notinvolve time 11411 remains const
TOSE does not describe wavefunction collapse

Transformations

Consider a spatial transformation roti translate

repr with a linear operator U H H
rot Arans forms a group G U is a homomorphism

g g V ga o VCgi V g ga E G
U must be unitary ie V t Ut This is because
the system must be normalised after applying U for

any IV
4145 41Utv141 I Utu 1

we can instead think of the operators being transformed
not stated
the expectation after transformation is
LU I Al U's LY l ut AU IV

CHA ly where A U AV
this is known as a similarity transform
A O e UtcAO U CA 8 UTCA8JU
similarity transforms preserve the spectrum If la is

an eigenstate Alas a la then Utlas is an eigenstate
of A with the same eigenvalue
A l Utley UTAbut utAlas acutlas

Some transformations depend smoothly on aparameter Q
V SQ IH i 80 T t 0604
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T is the generator of the transformation U Cindep of 0

T is Hermitian Utv It T Tt to first order
the infinitesimal changes in state1operator
Int t i 80T t 147 She if 0TH
A I tifft Act i got t 8A i FEET A
deeprelationshipbetween commutatorandderivative

finite transformations by repeatedly performing infinitesimal
UCO dings I iEnt

N
e IOT

Translationsrun

Translations in RP represented by Vlad are simple
because translations form an Abelian group

V sq I if a aEIA toll fam way e ia Eth

Utsav ft USE Usa Pi P o

since Vlad is a translation
E y L 41 Utca X Vlad147 D x ta

Utca I UCat E t E

e It is a R th IC I if a Eth It far
Xi P it Lij It

To translate a positionspace wavefunction we first
consider the action on eigenstates
Kuta IIs CE VED t UCHE to CatE UH I I

ut Xu Xt a XV Vx a Cx U Utada

so Vla IE beta
Ultron E LEI Ula.IM LE EIUS UCE e
we then see how E relates to spatial derivatives
YCE fat UCI SE DY
4 E sq UGA LEI t ite Eth147 CE ly

iz LEI ta f 14
LEI Rly it UCH

Rotationsrn

For an ordinary vector I C RP an anticlockwise rotation
through 191 around the I axis can be repr by a
rotation matrix ACE vav Klay
det E t so lengths are preserved
but the rotation group is non Abelian RCEIRIEltR.CPLRL.ee

For infinitesimal rotations in R
Y It sexy to af ftp.tin Sa

preserves length In
ELSIEGA Etta htt Sfx I OCHER

y t SE xt t tax Cytffxy t 0 18212,18112

Elsa RIED y Sax Stfu SR x text toll sailsat
fax SR xx tollsailset

i e ELSA EGEDE ELSE x self y
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For the rotation operator UCH on Hilbertspace
Sa I if a Ith toll fat Ith is the generator
Uca e

i E Ith

the relation in IR implies Usa UcsfD UlfExff IH
I iz89 I l Espe I ifsaxse I
the fai Spj Ji J iz Eijk faitBj Jr

Ji J it EijkJr
Cartesian components
of the generators
combining rotations and translations Ji P ihEijkPk

An operator V transforms under rotations as a vector if
utca V UCH A a V c Ji V iheijr.tk
this is true for the position operator X
an operator s transforms under rotations as a scalar if
Uta Sula S Ji S 0

Spin
we can alternatively think of rotation as infinitesimal
translations
Utsa IV Sai It Ff 1 1 WE
us at I Eflaxxt I
define E Ex E and SE Ifk E

i U fat I iz SE k to C12AM

this is the same expansion as for I so k and I
have the same algebra

However for a composite system I is not the same as

I despite than operating identically on R
the circular translation e E Hht a

Idoes not change orientation f k t o I th
I is a circular rotation AND
a change in orientation spin I Et E

E does not affect thecentre of mass wavefunction
Si X Ji X Li X 0

Si Pj Ji Pj Eli Pj O

Si Sj iheijr.sn implies that Eth indeedgenerates rotations

Parity transformations so no generatormmmm I
Parity does not depend on a continuous parameter Parity
is a unitary operator IT where IT 1H The eigenvalues

are H 13 anticommutator

IT IIT I IT E t EIT o IT x

Itt LIT ITI x xp IT Itt Kitt x BIT
Ex R L

likewise IT IIT J

I and R are vector operators I 4 are pseudovectors
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Time evolutionwww

Translations in time form an Abelian group with
timeevolution operator UCH expC if Ht

It is Hermitian and will turn out to be the
Hamiltonian of the system
since HH is the generator we can write
14 ft St 14LH if St HINA to Str

it 3 14417 HNCH TOSE

unlike for R and I group properties do not
completely constrain the form of H

In the Schrodingerpicture States evolve in time whilst
operators have no explicit time dependence
in the Heisenberg picture the operator is evolving in time
LYCHIQ LYCH UCO 1UHH Q UH 1410

QmCt rt for Heisenberg

datanut if Uttt H Qs UH
If H QuHD

To apply the TOSE in real life we must specify the form

of the Hamiltonian H HC I f the dynamical relation
e g n 142M is a rotationally invariant relation between
time evolution and spatial translation

we may add a potential VCH
thus in the Heisenberg picture
d hI it LH x PEH

m
Heisenberg ops

d hI it CH P TUCH

only now can we associate the translation generator
P with momentum

ConservedQuantitiesh
Operators are conserved if they are time independent even

in the Heisenberg picture

doff o iz CH actD UHH H Q UCH 0

CH Q 0
conserved operators commute with the Hamiltonian
thus systems stay in eigenstates with the same eigenvalue
Q UCH Iq UCHQIqs q UH192

Conserved quantities are generated by symmetries
a transformation UCA e it

may be applied to H UtcQ1HULA
symmetry if 4 unchanged Ut40 4 CTRD o

ZIT 0 conserved

translation symmetry f cons rotational symmetry I cons
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The Harmonic Oscillator

Any general potential is harmonic near the minimum
The Hamiltonian of the 10 harmonic osc is

H Em mix
define the lowering and raising ladder operators

A ztmwcmwxti.pl At
a
marx ip

these operators factorise the Hamiltonian
AtA Ew I H AwCATA tf

N ATA is the number operator Hermitian
A A'T I N At At N AI A
let In be a normalised eigenstate of N To find
NAttn we rewrite NAT N At AtN

At AtN
NAttn nthAttn

and likewise NAIn Cn 1 A In
we thus know the relationship between eigenvalues
we can further show that the eigenvals are nonneg integers
n nCnIn Cnl Nlrb Cut AtA In HAln IT 30
if n were positive butnot an integer repeated lowering
would violate this condition

the ground state is to terminating the lowering By
definition A to 0

En ht E tae n 30 not

the 10 harmonic osc has non degenerate energy levels so
Attn Cut nth
to find on note kn f HATIn IT Ln IAAttn n H

Cn Tnt I
energy eigenstates can then be generated via

Intl Attn ant Attn to
likewise I n D In A In for n I

Positionspace wavefunctions can be recovered
let Nobel Loc107 be the groundstate
Loc IA107 0

Lool Marx tip to Mariko x thro x O

Moby Ifa expf MffxD
1storder 00E instead of 2ndorder from TISE

Operator algebra can simplify expected values e.g
Ny in the ground state
X Fnma At Atl 42 y Fmw KATA't lo

Fmw LOIAAttATAlo I
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Timeevolutionn
In Heisenberg picture Ptt pooswt mwXsin wt
Consider the groundstate of the QHO translated by xo
10 sco e Plt log
thestate evolves over time via
UCH10 Io UCH e ikomhIOS UCHe ixot.lt VEHUCHIo

expf iyhlmwxoxsinwttxopcos.at e iwtt4o
result is Gaussian centred on occtt x.coout and
momentum pctk mwx.sinut
same as classical oscillator

Angular Momentum

Thegenerators I obey algebra Ji iheijr.TK
no two components commute but Ji I 0 so we

can diagonalise Tz I
let 1B m be an eigenstate IIPM P 54km
and Tz1B m PhIB.ms Eigenstates orthonormal

Let the angular momentum ladders be J Tx Ii Ty
Tz Jt th Jt
I J 1km7 CI J TtJ I 19ms

pH IBM
Tz J t.IR m tlIhfJtlp.m
It can be seen as reorienting the system towards
the z axis

To actually find the spectrum we need to know the limits
These come from the constraint that the norm is positive
11 Jt 1km711 LBMIJ T.tlBin 30

hi p month 30

Jt increases m but P does notchange so there

must be some maximal m j on which Jt 1B j 103
and so B j j ti

likewise 11J 1B m IT 70 so P Lj A
f jgth ji j n ji j j o
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j j 2 s C No because J changes in unit steps
We now relabel the angular momentum eigenstates as
I j m where j is a halfinteger and m j j

Tz l j m m k l j m

Il j m jljtth 2lj.ms
J lj m jcjtilmcmt.IT l's m I I

Jx Ji TJ 112 Jy Jt J 112i so rotations around
arbitrary axes preserve j
l j j is the state with angular momentum maximally
aligned along E We can approximate thedegree of

alignment as Lj j l Joc'tJuil's j
Lj j I TEI j j I

if we measured I along a Gino 0 coset the
classical result would be the projection Kj oooo
the QM expectation agrees Cj j l a Il those
but there is uncertainty

We can model a diatomic molecule as an axesymmetric body
qwith I Ix Iy f Iz e.g Co

H y JE III Jz4 Iz II
lj.ms is thus an energy eigenstate
Ej m j Cjtf h2121 truth IIe EI

because Iz KI for co the TIETZ term rotation
along axis requires very highenergy to excite

Consider a rotation of 14 ME AmI j m

AI 145 Emam e KH Ij my ame idmlj.ms
for integer j a rotation of Za is identity Butthis is
not so for half integer j for which UG E 1H
nevertheless because we are dealing with projective Hilbert
spaces this is fine

The Stern Gerlach experiment showed a discrete spectrum
of angular momentum

Spin
Same algebra as I Si Sj itEinsk Li Lj ite kLK
so I and I have the same representation
Let Is o be a spin eigenstate

Is or scs tht't s o and SzIs or ok Is or

s is halfinteger a c s Stl s I s

The Hilbert space of a spin S particle is Lype Ebt
unlike for J and L the total value s cannotbe changed

s is an intrinsic particle property
Spin o particles are called scalars bosons Hence there is
only one state 10,0 whichis aneigenstate ofanyrotation spherical

Robert Andrew Martin 2021



Spin 42 particles have 2 orthogonal state H It I D It I
a generic spin 42 state is IV all THIS with 1441612 1
matrix repr Sz

HIGHS HIGHS

HIGHS cuszks
El I

likewise Soc 45 51 2 Sy St S 112i

se Efi lo s Eloi
we write f EE where I are the Paulispinmatrices

A spin 112 particle has a magnetic dipole moment ft 81 where
8 is the gyromagnetic ratio
particle precesses in a E field with angular velocity fA
We 2E where w is the Larmor frequency d

if the particle is fixed the Hamiltonian is H 21 E 88

for a B field in the E direction This is the correct H because

Tgif it H Si Fybglsj.si Mr X E as needed

the particle may initially have its spin alignedalong
some axis in sinocosol sina.in 0 cosQ

a Elna Elm In e 0 EH te
i lineITS

this state evolves as InnCH UCHIna This recovers
theclassical result

with a rotating B field we can induce precession along a
different axis De excitation produces radiation which we
can observe This is how MRI works

Spin 1 particles have 3 orthogonal states
It It I to 17,05 I 7 17 7

Orbital angular momentummmmm

Lil l m LUH l m 14ms mhIL.ms
these eigenstates may not be eigenstates of I
circular translations through 2 t leave the state
unchanged unlike for rotations
e Ziti E't th Il m e Z'Tim Il m Il m

ME Z L c No no half integer
In position space k Ex I it xp

LEI Lz 14 ih x y UCE its Z 4CI7
the eigenvalue equation is CEI IL m mt 044 m

He m Coe K ma e im 04M

radial dependence can be derived by considering the
action of Lt on the highest weight state

ily te i0 Zoticotofz

44 0 44C E Rcr sin toend
othereigenstates can be constructed with L giving
the spherical harmonics Yilo 0
under parity Yinl E f D YMI lie even or odd with D
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The Isotropic Oscillator

Consider a scalar particle in a central potential

H Efm till El Print tucket

H E H Lz E Lz O so use In 4ms as
basis n for energy eigvals L for Ed m for Lz
energy levels must be independent of m CH 47 0

we thus expect zLH degeneracy from changing Lz
in general energies de depend on L

Some Hamiltonians depending on VI may have further
degeneracies If the algebra closes i e CH QI all HQ then
we have a dynamicalsymmetry
The 30 isotropic harmonic oscillator is the sum of 3 10 QHos
with the same frequency H HatHy t Hz
ladders same as 10except vectors At ztmw mark tip
Ait A Sig Ai A AitAit o

H twc AI A Z
energy eigenstates are In Innny nz

ACID Atg YAITZ
f

lol
noo ng ne

En nsethythztz Tw X x 1 xxx l x
the degeneracy is t2ICNHYz.i.e NI m ng ne

much larger than the 2Gt we expect meaning that there is
more thanjust rotational symmetry

The isotropic osc has invariance of the form Ai Sui Aj where
Ui's is a unitary matrix notoperator that mixes the
Cartesian components of At A
thereexists a Hermitian operator Ula 1H ie T

and it can beshown that I AI A and that Tj
is conserved thwftij HJ AitAj Atn An O

to explicitly find symmetries decompose t
trace antisymmetry symmetry

T.ge SiAI A I EijnAjtAre AitAuttotAi Si EtAI
t b t

H trivial L ihlatxt.tl symmetrymixing P

Isotropic oscillator in spherical coordinates
mWecan analyse the isotropic osc in spherical coordinates rather

than Cartesian i e In l m instead of Inn ny nz
Let Pr I I R Il 12 be the radial momentum operator A HI
Hln 4ms her tqj.ptEmailEP lni.ms

Paint ftp ttzpraiR lni4m Him 4ms

He is the radial Hamiltonian for a particular E eigenstate
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R Pr it so behaves just like standard X P

Introduce ladders A
z hw pew Rti Pr CHILI

He tw ATAL tht

Hui Ai Ai Hc Kw Hit CALLED Ei Tw A IED
so applying Ai to IED creates a state with lowerenergy but
with a radial wavefunction consi twgred.nl
but CE Ait 0 means that Ac does notch E
considering the norm Efw L EclActAiley HATE tho

max n Ethw k
TheStates of maximal angular momentum at a given energy
has AImax Elmar 0 so the radial wavefunction obeys

darttrt heat Mwf Crl Ecmax O

Lrt Elman Crimm e Mari
ro fhI2MW

this is the quantum equivalent of a circular orbit but it
still has nonzero radial KE
can obtain eccentric orbits by acting with Atc

Coulombpotentiate
In R only the isotropic osc and Coulombpotential havedynamical
symmetries

H En 4 Hi En l m Rin
for fixed energy I C 0 in 13 so degeneracy is
Htt n

this extra degeneracy exists classically also
In a closed Kepler orbit constant k confines the orbit to a

plane but it is the conserved Runge Lenz vector that closes
the orbit tr f X L K e

I

IET K't En I Ll and e II
in QM we define f IplExt Exa n

Robert Andrew Martin 2021



Addition of Angular Momenta

Classically angularmomenta combine as I tot I t I i

II I IIzI E I Ith I E I't l t l't l
Consider a 2 particle quantum system particles have momenta

j jz and eigenstates Hi m 3 Ija ma 3
a basis of the composite system is Hi m ox Ija ma
we want to betterunderstandthe total angular momentum

we define the composite angular momentum operator as
I I t Iz I I t t2 I I
I II JoeJax JayJay1 TizJez rewrite with ladders

I JI t JI t JiTI t Ji Ju t 2 JlzJzz
consider thestate 1J j I ja D i e both subsystems Maxaligned to E
Tz Ij j lja.jo Cj tjdhlji.jp jz jz7
I'll j j I ja D Cj tjdcjitjz.tl h2lj ji7lj4jz
hence I's j l't D l's j is the max j eigenstate of
the totalsystem with eigenvalue j j.tk

Other eigenstates can be generated withthe total ladder J Ji th
J l's j7 rj t l's j D
we can equivalently expand as J l'sD t Ij j I ja ja
all of these eigenstates hare j j ja so momenta are still
maximally aligned just not along E

There are alsostates withimperfectly aligned subsystems e.g H l j D
Jz Ij l j i Cj ja 1 t I j l j I
can find 1 j r j i by writing as a LC of basisstate
Ij l j D al j j I Ija j D t bl ji j Ha ja D

act can be found by orthogonality CJ j I I j l j D O

Can bedepicted graphically as rotation around semicircles withradius
determined by the total angularmom j

I's s l's hi D

pit
11 1 lowertotal

Fromentum
LI LI
4 aJ

The debsch Gordan coefficients give the prob amplitudesthat when
the totalsystem is instate 1J m the sudsystems are in 1h m
Ija m Cj m j M ja ma Lj m lj.im Ija ma

Hyotrogenm.tn

theground state no orbital angular mom i j L 112
Maximally aligned state is 17 77 IT e IT p
17,0 J H 7 Is It e IT p t IT elk p
17 I J 11,0 I held p
all state are exchangesymmetric is we swap pose
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10,07 determinedby orthogonality 4,010,07 0

10,0 fell Delap IT elk p
state now antisymmetric underexchange
state annihilated by Tz Joe Ty

Comparisonwiththeclassicallimitm
classically we expect j to rangefrom 1s jal It's
the totalnumber of States is ti L 2 s.tt C2JztD

this agrees withthe dimensionality of 7h Hz
classically IIP j t 21 I
pdf of alignments from area of band E t

ZITI sinfdQDP ftp.p Hld
21111121 I

in QM the fraction of states with some amount j of

angularmomentum is 2

Htt Yeti 3
if d Is I

agrees with classical

Identical Particles
For a 2 particle system II c Hi Hz with basis In In
for indistinguishable particles exchanging 12 72 can only
lead to a difference in scaling 1h a XI di his
exchanging twice gives 1h as 7214,927
A H describes bosons exchange symmetric FfhfY9e

quantum7 1 describes fermions exchange antisymmetric numbers

Pauli'sexclusion principle no two fermions can be in the same state

VI thin 1h2 x

2
Xi xz I 2 0

the spin statistics theorem relates spin to exchange symmetry
bosons have integerspin
fermions have half integerspin

oegeneracypressiwem
fre.ee fermions in a box are described by H FIM

If the box has size L the warerector is K Chi nz nz
The Pauli exclusion principle prevents all N particles from

sitting in the groundstate
the Fermi energy is the highest filledenergy level EE ITE
each electron occupies a box in K space with volume EEP
for Nes 1 this fillsup as a sphere 4g tart 3Me
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Thetotal energy in the box can be found by integrating in
K space Eto folk k 1 44 Ipdk
reduction in box volume is opposed by degeneracy pressure

Pdeg ZEIT
ZU

can be used to model a star where Ftot I GET

Exchangeandparity
A 2particle wavefunction can be described in Con relative
coordinates Icom I CH t E Room Ri t I

I ra Xi E Eee CA E
exchange leaves com unchanged but paritytransforms
rel can think of as inverting through com

Because Yin C H Yim under parity and exchange
is equivalent to parity on the relative component the
symmetry of exchange depends on L

Time Independent Perturbation Theory

We may not be able to analyse the true Hamiltonian H
so we can write it in terms of a simpler model Hamiltonian Ho
For TECO D define Hy Hot X they OH
7 0 gives the simple model 1 1 recovers true Hamitonian
to find eigenstates Ea of Ha we assume that the
eigenstates and eigenvalues are analytic in 7

Eg In 71B t 7487 t

ECT E O t 7 E t X E t

sub into Hr IE ECT Ex and compare coeffs
e.g Hold E o l x

Ho l B t OH la E IP t E l x
Ho18 to H 1B E Is t E t P t E t x

The zeroth order equation is the eigenvalue eq for our
simple system which we know obeys Ho lEn En IEn so we

relabel 1 7 1 n E En Can thus explore how different
order corrections affect the nth eigenstate of Ho
becomes HolRn OH In En IRn t Enl In
contract with Chl to give En Ln 104 In
contractwith Cml 7 Cnl to give Lml OH I n En Em cmIBD
Expand 1pm Ebulk so for a nondegenerate Ho

Lm10 H I nbm m f m in Em rm
1ms
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gives Ho18h t0h11pm En Hn t En lBn t Enl2 In
I Cnt0h11m 12En Ln 10h 1B E

MI n En Em

kn l0h1m l represents a mixing between Im and In Assuming

this mixing is similar for many 1ms the closest energy
levels smallest En Em contributesmost tothe perturbation
in the limiting case degeneracies are lifted

provided there is no degeneracy
Lm104 InInLA In t 7 fun Em

Im 044
KmlOHIn P

En X En t X Ln10h11n t 72 In rm
to 73

Finestructureothydrogeinum
The gross structure is a result of the Coulomb potential
En I put II where pr is the reduced mass and
L itEolic is the fine structure constant
the gross structure is independent of l m

To understand the finestructure of H we make corrections
relativistic correction to energy
magnetic field
Darwin term smearing of the potential near the nucleus

Using the relativistic expression for energy
E pic4tp Mdt Ff Ff's

we thus have a perturbation 04 kin m 2 around the
Coulomb Hamiltonian

GHnin is rotationally invariant so does not mix degenerate
states so we can use non degenerate perturbation theory

to show that En'Im LnLm 104 v in 1h1m
Evaluate the correction by writing in terms of Ho V

En 2En V him1ChhimEn'Im chain nun Tha Ho 44mm
from the virial theorem 2 Lk Lv 0 En CV 12

ELLEn This could be incorporated into the
effective potential VeffCr I'm LTE t II f eo

En Etat
EnCt't Ira'd c p Enough ma l p Z p
but 844th I En Htt En t Iman34744
collecting terms Een't Ema Iz E It

A charged particle in the Coulomb field experiences a 8 field
B E Ix E tap Fico 1 teoµa p Casing f 8Mt
theelectron has magnetic dipole moment Em I which

couples to the B field leading to a spin orbitcoupling correction
OHso EnE E aEma Exit
I ICI E E E EIndng l HIC HI Wth E In j ng l
Eiji LnjlloHsol nil 4 477 fu HEP

nu
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we know Pr Hid it l htm t III ps and Qpr mm o

this gives an expr for Hydnji given we know Tep nj
Combining kinetic and spin orbit corrections gives

Fn's Emmaftp In In t I
formula holds for j L I 42

Darwin term means it holds for f 0 also
for heavier atoms relativistic corrections become more impt
En ith e En e iz l Ind th k 4

Helium
Gross structure described by e repusio

H time Eine IIa Hel Efe Is
We treat the electron repulsion as the perturbation
unperturbed singleelectron states have En Ime242242 2newts
ground state is Into It o o 17,007 KHALID with

energy Eo 2 x 4 X B bev 1088ev
The first ordercorrection in the ground state is

Fo VI Ion II Fifa Delo
this expectation must be explicitly integrated to give

E Z 4N med I II t

Degenerate perturbation theory stanchange
www c

Perturbing a state with degeneracy can lead to large largechange

changes in the eigenstates Imagine tilting a bowl vs tabletop

In n t 7 In antonymy EnEm 0 fordegenerate state

Consider a subspace W c H spanned by degeneratestates of a
particdar energy w r t Ho i e f 147 EW Holy Ew14
let Ir 3 be an orthonormal basis for W and definethe
projection operator Pw H W Pw E Ir Crl
also define an orthogonal complement to W as

we IX EH LYIN 0 tht EW
along with a projector Pt I Pw
projectors obey the intuitive relations P P Rupe P Pw

since W defined by Ho also have Ho Pw Ho PD O

Consider an eigenstate of the perturbed Hamiltonian and insert

It Pt tPw H H ECDHD
Ho 704 Eld PstPw 1 3 0

Ew Ect 704 Pw14 7 t Ho 704 Ect Pt 1 7 0

apply Pw and Pt to the left to get 2 simplereqs
Ew Ect t7DwOH Ruhl D t 7PwOHPt 14 7 0

Hot XP1OH ECT PHX t 7164Pw14 7 0

now expand 14 3 127 71B t 7483 t and Ela E 7E t

for a zeroth order eigenstate IN CW with eigenvalue E Ew
first order Pw04Pull a E la

Robert Andrew Martin 2021



Wemust therefore choose la to also be an eigenstate of

Pw04Pw i.e an eigenstate of 04 within the subspace W
in practice easiertodiagonal've insubspace
finding an eigenbasis Ir 3in of W we recover the nondegenerate
expression Erl CRIPWOHPw Ir Cr10h11 r
perturbations thus break degeneracy because degenerate state
of Ho may not be degenerate state of 04

Starkeffect
m

H atom in constant F field arbitrarily along E model as
a perturbation OH etEl Z
The ground state unaffected to first order

04 y 41,0 012 17,0107 0 by parity
The n 2 level has degeneracy 4

W span 12,0107 121,47 12 7,0 12,1 77
parity implies L2 d m l 2 I 2 Lim o unless Il l l odd
Lz 23 0 2,0 ol Z 12 I Il o

so within the degenerate subspace W the matrix elements of Z
O 0 a Osimplify to OH etEl o o o o a L210,012121,03
a o O o 3AoO 0 O

The perturbation has eigenstates and eigenvalues as follows
3e IELao O O 3elElao
140107 141,07 12,111 12,1 17 Iz 140107 141,07

the degeneracy between 12,7 I and 12,7 77 has not been
lifted because the perturbation has Caxilsymmetry
the otherstates represent deformedorbits due to the field A tiny
field is sufficient to deformorbitsand lift this perturbation
the 140,05 state is normally metastable because two photons
must be emitted to get It o o to keep L constant In the
presence of an E field it becomes much lessstable because of

the mixing with 12,7O can decay with one photon

The ground state is nondegenerate with EEP 0 but the state

is perturbed quadratic Starkeffect

IV 11,903 t etEl In 9 In l m
E En

only states with G I m 0 survive
the perturbation of the ground state is interpreted as
a polarisation the field induces an electricdipole
moment D elk y xE with polarisability x

x 2e E l CnMioIZ17,0 o 12
he E

go

this dipole causes a 2nd order energy shift Fn'I EE I EIERao
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Time dependent Perturbation Theory

In the time dependent case we want to know how fast
a quantum system changes in response to a perturbation
HCH Hot OCH where Ho is the model Hamiltonian
and O is the time dependentperturbation
Use the eigenstates of Ho as a basis

Eq
a general state is then I UCH e

i
anCH In

coefficients an have timedependence due to the perturbation
from the TOSE it 21kt At HCHHAD

CanEn t it'an e iEnt't In CanEn to e ith th In

contract with Lkl
ih cir.CH En anCH e

E Ett Holt In

an CH an to t ith fto anCt'te ith Entthicklo In df

air to only because of DCH so we can approx
an Ct't anCto f const in the integral
define Wkn En Entth then the first order approx is

ar.CH Aalto t ithft Enanctoleiwknt Lk IoCt'tIn de
if we start in an eigenstate Im an Cto Sum

Consider a Quo with some force FoXe t If it was
in state 107 t s o what will its state be as Hos

IIF Ault Fff ftp.eikwt e t t Kl x to at

i f k foFET e e WE44
to first order the state can only havetransitioned to
11 with amplitude n II e 0442

Acommon example is a time independent perturbation
DL x P I switched on at E O i e 0cg 0 to

0GB too

if the system starts in eigenstate Im
an t Sum t ith fote i want Lkl Olm del

the prob of finding the system in state 1k at time t

Ian t 12 4gal4k101m 12 sinkwarmthWkm

Define the transition rate rum lay I T EtHaut l
finds sinkwkmthywr.int I 8 Unm so for the
step function perturbation Mlm 71KS KIKKIOlm THEREEm
go to first order this type of perturbation will only cause
transitions between States degenerate with Im
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fermisboldenRules.hn
important special case is monochromatic perturbation
OCH de iwt t Ote wt t o

as before start in 1ms

aultkfhwwhm.ae Leikam
wit y tag I Leikam

wit

as t is there will be transitions to states 1k
when either Er Emthou absorption

Fa Em the stimulated emission

the transition rate is then

rum Ik 2ftKalampSCEn Em that
Fermi's Golden rules

Inreality the transition rate does not include perfectdelta functions
else you would needinfinitely precise w Nevertheless monochromatic

light does notcause appreciable transitions
In an isotropic radiation bath there will be a range of frequencies
from all directions

use the dipole approx FCH constant in space over the atomic
lengthscale H Hatom te Ectt E
because of isotropy ETH o and

EiLtdE Ltd fig Leo plate inch th da
pcw is the energy density EoETH Jo'spanda

treating e ECH I as a perturbation

a if foteiwr.net Kl Ect Nm At

tartt fotfotfECHE Ltd eiwkmtti tdkklklmkdt.dk

4e4jyyf.fm ffopCw foteiwkmuHdti dw
Iv

III flakm W

the transition rate thus depends on the energy density of the
field at a particular freq
Mlm Ik ttekklklms.cm111kg

3 E ht
Hakan

The absorption rate is equal to the stimulated emission
rate because pCourm is an even function

even isolated atomsmay spontaneouslydecay due to
random fluctuations in the vacuum
Einstein showed this with a thermodynamical argument
Fm r plat Omsk rim
f k m PCut On mcwnm
Are m for spontaneous emission
in equilibrium nulAre m tp Br m nmpPm K

and FT exp hwr.vn kotI pcwI IEICeh4kot D
t

An n must be independent of temp as it is intrinsic
A k mlwr.my Affirm 8mm Wam
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Ionisation
mm

Sufficiently energetic radiation can ionise theatom moving the
electron into a continuum state
consider the probability that H atom transitions from
its ground state to a state in which theelectron is a plane
wave 224100 ee afflas self eiE El ith 312
neglect Coulombpotential for the freeparticle
in the dipole approximation
0 t e C E e wt t ETE z e int

the transition probability is their Ilk 12 110021
Ionisation absorbs energy

N 1700 Ik ZHIe E KEI 2 17007128CEe E oo tu

The differential ionisation rate describes therate of ionisation to
momenta in range K Ktdk

dfl 1700 Ik
ar T.EEiieaX

H
Kspace

valid for wavelengths much larger than the
Bohr radius so we can apply Dipole approx
but a small enough freq highenough so that
we can neglect the binding energy Ftoo

Interpreting QM
we maynot know what state the system is in because real
systems are never completely isolated

i Suppose we think thesystem could be in one of the states
la 3 with classical probabilities Pa for each
the density operator is p pal Next
p projects a state onto Ix with probability Px
IN do not need to becomplete or orthogonal

The density operator is defined by the properties
p p t

Lol l MH o f ez
probabilities are real
positive

truce L sum to one
Asystem is pure if there is some IX c 71 for which

p IX LX l e g one Pa L rest are zero
otherwise the state is impure mixed
for a pure state p p so eigenvalues are 0 or 1

PA UHplot UHH so there is an extra minus sign in the
Heisenberg equation of motion 23 th H PCH
For a system described by P the average value of some
observable Q is tr PQ Paul Q l a
combination ofquantum and classical expectations
we thus never need to know thestates D just take trace
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A qubit is a 2 state system with basis IT it 3
any 2state system in I can be written as an LC of
identity and the Paulimatrices

P 1H t f e l t lez be ily
but ily I be

for both eigenvalues to be nonnegative we need
delp ICI le le 30 I b let
this defines the Bloch sphere

p is pure iff 161 1
if he Q p It so we are maximally ignorant

we may want to copy a system so that we can measure

differentaspects of it without disturbing others
no cloning theorem this is impossible
consider some unitary copying operator which copies a state
IN EH onto a state le C 7h with somearbitrary phase
C 147 le e int e he he

KolKell ly leg Roll 1 ctfu les e KO et Khloe hey
I Lolly I I Let14712 I Lolly 1 0 or 1

cannot be true for all 107 147 EH so C cannotexist
To measure the impurity of a system we can use the

von Neumann entropy Scp try pine
p eigenvalues c COD so Scp 30 with equality iffp pure
S concave entropy of combined subsystems always 3 sum

of subsystem entropies SC Ek pi 3 EK Spi

The density operator with maximum ignorance can be found
with Lagrange multipliers Extremise Scp ICI trap

try Cfplnp pp Sp Tsp O

82 trap Y o

Inp ti a o p et l 1
fixes the constant et

Pma dimity 1H Sleman In dimat

Entanglement
For some Hilbertspace 71 E HA Ho describing a system and
its surroundings a state II EH is entangled if it
cannot be written as a simple product IVI 10 ox ht

e.g for a qubit he tell tHD HD is notentangled
IEPRS t Mlb 147117 is entangled
entanglement means that subsystem states are correlated

The reduceddensity operator for subsystem A is given by
PA true Pao ie sum over 8

an observable whichonlydepends on A has the form A Qa Io
and has expectation train Ho Pao Qa 7o trainCPAQa
this agrees with the result for an isolatedsystem

The entanglement entropy quantifies the entanglement It is
the Von Neumann entropy of the reduceddensity

SA trya Cpa InPa

Robert Andrew Martin 2021



if Pao is pure andunentangled Sp o
if Pao is pure butentangled Sa 0 even though Savo o

so tracing over 8 also loses info about A
If the total system is pure the entanglement entropy issymmetric
i e SA So
Unlike VonNeumann entropy entanglement entropy is subadditive
whole is at most the sum of parts Savo ESa tSo
in fact strongly subadditive SAvoir E Savo touc so

Decoherence
www

Suppose the whole universe were in a pure and unentangled
state at t o with plot Into Iol for IIo 10 he

where 102 CHa 147 CHe
Under timeevolution pLH VotoCHplotVaotttt
If A starts off as pure anddoesn'tinteract with 0 then it remains
in a pure state

i e Hao Ha tho Ha 407 0 UaoCH UnCH Volt
then pact truePaoCH LOCH LOCHI

Generally there will be some coupling so
PACH true VACH Ito CheolUaotCH

can think of this in terms of matrix elements MpCH LMUaoCHIX
between the original states evolved in time and basis states
1B 3 of Ho pa t EpMp paco MptLH

MPH is a unitary operator on Ha
interactions then cause a pure plot to become entangled

Consider system A as a qubit with system 8 being some

measuring apparatus with basis 102 17 12 3
8 initially in state to ideally will change to 125 or 12
depending on A being IT or It without changing A
this will happen with some probability

H 103 IT rfp 10 tf 117
V Id 010 Id rfp lo t Tp127
for this evolution Mp L Pluto
Mo ONIOS Ftp 1a
M 71h0 Jp IT Ltl Mz 21U lo Tp Id Il
combining these PA evolves as

I lie
or if we define a probability rate r Mst
him ACH III I'I iii I

Hence even if A is initially in some quantum superposition
entanglementresults in phase damping system is a classical
superposition still probabilistic butnotquantum
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TheEPRGedankenexperimentmen thoughtexperiment

Measuring the properties of one particle entangled with
another violates locality spooky action
Consider e et pair in the state 1 Epr track Its Its HD
give e to Alice and et to Bob
A measures the spin along axis a of her choice In the
Copenhagen interpretation if A measures thin we knowthe
state collapsed to 1EPR Has He
8 measures spin of et along b

the costE e 04pay sin E eionHas

t

because A found e in 1Te 8 finds et in the with
prob ktelta.IT sinkE

Einstein objects that this means A can affect 0 instantaneously

proposed that when e et was created some hidden variable
VERIN was fixed which completely determines the result
of a spin measurement along a

this would mean A 8 measurements are correlated so no

spooky action
ice spin is a function Seca e that deterministically gives
th hi Uncertain because we don't know I

tf Hidden variable theory is true let I have some classical
prob dist We are then interested in the quantity

Seta SpCt fan Seca El SpCt H Pel d u

8ellbinequahityme.be
ell explored the consequences of Hidden variable theory
Seta SpCE hard to compute Bob couldchoose to measure
along he instead so consider

Seta Sp E Seca 5pct fpn Seki SpCtet Spck pad't
cons angular momentum SeCE e tSpCa e 0 and

Spc6,112 If always
LHS San Splat e spCE e I 2Spck e Spck eJp e dnv

fluctuates between I 574
result is Bell's inequality
Ksp e sp E Csp E Spca I E II SpaSpCID

QM violates Bell's inequality
consangular momentum See Ipt Ie Ep IEPR O

measuring e along q and et along b

E Ee Lp Te E Ep IEPD Ie E Ep E Ep IEPR
Ca Sp K Ep Epn t E b 14

LHS of Bell's ineq II I a CE E I
RHS of Bell'sineq Ea l t bi
RHS can be a LHS violating Bell's inequality

Hence QM is inconsistent with Hidden variable theory so

we justneed to testwhich is correct
However Bell's inequality is hard to test experimentally
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CHSHinequahty.TKClauser Horne Shimony Holt inequality is similar to Bell's
inequality but easier to test
who 6 Alice and Bob measure either tl I depending

on some hidden van YER
define the LC C Ca ta 2 b t Ca a 2 62

depending on I either a Cut ayy 1 2 ahh 924 0

OR ate take 0 att ade 1 2

so the CHSHiney is 2 E C E 2
In QM replace measurements a b with commuting operators
A B with eigenvalues II
A7 83 1 7 E 4 Ai Ad Bi 8D
1 CA Ai El CA Az I t l CAA I E 2 and
Q2 3 CQ 2 for any Hermitian Q

these combine to give the Tsirelson bound 22 Ecc EZE
which can violate CHSH

Experiment shows LC 72 so Hidden var theory is wrong
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