
 

Statistical Physics

Objective is to understand macroscopic behaviour of a system
with many particles I 10 e g p T V s

Microcanonical ensemblerumrunner

Consider an isolated N particle system IN target with fixed
energy F

instantaneously obeys HIV F147 where 147 is the
microstate describing every particle's behaviour
a macro system can be made of many microstates with the
same energy

Fundamental assumption in equilibrium all accessible
microstates are equally likely
equilibrium steadystate with constant macro quantities
accessible can be reached by smallperturbs Cat fixed E

ICE counts the number of states with energy F
Entropy SCE ko In NCE
if we combine systems with Ei Ea Rl Ei Ea Rt E ICE

entropy is additive S E Ea SCE SE
rule ofthumb imagine

S x N so it is an extensive quantity combining 2 identicalsystems

2nd law of thermodynamicsmurmur
Consider two isolated systems with Ei Ez bring together and
allow them toexchange energy Etat E TE is fixed
Total num states is ACETALET summed across every
possible value of E E Ei

Aceto FE RICEitRzCEtot Ei
Eri exp sifoil t saCEtoth Ei

the sum will be dominated by the Ei F that maximise
the exponent 3 I E E FEIE Eto E O

S Etat KolnrcEtot Si Et t Sd Ftot E but
5 E t SzCEtot F S S Ei Sz Ea by def of F

S Eto X 5CEdtSz Ez 2nd law

Temperature
Define as FE This satisfies 0th law no energy

transfer between equal temps
T Tz IIe IIE this is the condition formaxentropy
entropy already maximised no energy transfer

If T.FI therewill be an energy transfer
SS 3 I E SE t El E E SE

SE f t Iz 30
so if I Ta SE co hot cold
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T can be negative if 54 as ET eg spinsystems
in practice these systems are coupled with surroundings with T O

negative T hotter than infinite t

The heat capacity at constant volume is Cv IF
allows us to relate 5 to measurable quantities

IEEE E as f ETI dt sa

3 Ha so if 630 SCE is concave down
re

General procedure for analysing a Thichcombinations of Num
I Count RC E using combinatorics have energy E
2 Find SCE using the Boltzmann entropy
3 Approximate factorials with Stirling's formula Inn e N in N N

4 Replace N N with N'total and E
5 Find temp with F EE and invert to get ECT

Istlanofthermodynamion
Num states depends on the volume V
SCE v Ko In NCE v
as before CIEL
we define pressure to be T F E

Consider bringing together systemswith P Pr Game T f Pf
with a movable partition but Vtol const

maximising entropy hey ITher p p
agrees with physical intuition
Use definitions of T P to derive the 1st law
S SCE v dS fffeludE F edu

DE Tds pdV
in

workdone on systemheat transferred to system
at fixed temperature

microcanonical had Fixed
Canonical Ensemble energymmmm
Consider an ensemble in thermaleq with large reservoir R with temp T

Sys has negligible energy compared to R

energy of system is no longerfixed reservoir

Let In be a state of sys with energy En The noun ofmicrostates
notenergiesin syst R can be found by summing over States like before

R Eto En Rd Eto En can haveduplicate En
exp to SrCEtot ED

but Etot En so we can Taylorexpand SrcEtot En
ICE of exp tko SrcFtot FEIE Eto En

exp Srta exp f EEE

The probability that sys is in state In is
e Enl Kotpen num stateswith En p n I e

PEN
totalnumstates Ee Emmet 2 B

M
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this is the Boltzmann distribution
B Hot and 2 B e

PEM
isthe partition function

if PEn s I P n is small VERY USEFUL

if BEN LCI Pcn is closer to 1

The partition function of a combinedsystem is the product of
the subsystemis 2 m exp f PEE PEM e PEI e

PEM
z z

Energy in the canonical ensemble

LE pintE En e PEN Fp LE 315
similarly EP CED cess off
the heat capacity is a 0572 FBkof
Cu x AEI is extensive OE e TN
energy isextensive EEE Yon
in the thermodynamic limit N o EE O i e the
fluctuations around the avg are small
we thus write CE E
in this limit canonical microcanonical ensembles are equivalent

GibbsEntropywww

S Ko Inn is only true in the microcanonical ensemble
Trick to derive S for a general system consider a micro ensemble

consisting of W copies of the system w l

pen W systems have state 1ns
no of arrangements of states among copies D typingw

Sw Kohr ko w Pln InPln Stirling
entropy is additive for one system 5 If
gives S Ko pin Inpin Gibbsentropy a.k.a Shannon

von Neumann

Free energywww

When F 0 the ground state minimises energy
Generally the mostlikelystate minimises the Helmholtz free energy

f E TS
F is the capacity to do work Cat fixed temperature

nun of States prob of being
Proof withenergy E in state

prob that system has energy E is PCE FEET e Ek
z

pce estko e F Kot Iz e PF
so to maximise p E minimise F

F is a Legendre transformation of SCE v
f E TS IF DE Tds Sdt pdV
most natural to consider F FCT v s FF u P FF

i Can show that F Kot Int 2 e Br
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chemicalpotentiatmun

In some systems norm particles N may change Ceg permeable membrane
SCE v N ko Ind f E V N
define the chemical potential to be M TEN
µ p in equilibrium

The 1st law becomes DE Tds potV t prdN
ie m is the energy cost ofadding a particle at fixed S V
pi EE s v

Helmholtz freeenergy df Sdt pdV MdN

Grand canonical Ensemblemurmur

The Grand Canonical Ensemble is in thermodynamic eq with a large
reservoir of fixed µ and T
particle noun can now fluctuate in addition to energy
reservoir much larger thansystem

Prob that system is in microstate In with En Nn is i

p n I e MEN MNn Z e PCEN mNn
2LTmil

Z is the grand partition function from which otherquantities canbederived

LE peen Fp InZ LN IpFmHZ

AH three canonical ensembles coincide in the thermodynamic limit
the grand canonical potential is I F MN dot sat pav Mdm

OI KotIn Z 2 e BE same form as canonical with f

Extensive vs Intensive quantitiesmuumuu

Extensive quantities scale with the size of the system
e g N V E S

foreach of these can write SCXE XV XN NCE V N AER
Intensive quantities are independent of size e.g E F TIF M TEN

Extensive x intensive extensive

e.g f E Ts is extensive FCT XV TN A FCT v N

many functional formssatisfy this e g f n V run

I F MW is extensive OICITYM TOI CITYMI
unlike for F this is only true if I inv
but ZEITµ p I pet m V
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Classical Gases

The quantum partition tune is 2 fate e
P

Classically specify statewith phase space coordinates of everyparticle
for a single particle H Em If I t VCE

this gives 2 ypfd3pd3q e PH derivefromQM

An ideal gas is N noninteracting particles in a box
H 1112am Z cu T hpfd3qd3p expL PILL

v k74312 3

X is the thermal de Broglie wavelength
the partition function is then 2 CNN.tl Yasin

Pressure p FF Iv KohnZ NIKI idealgas law

Energy E IpIn 2 N k t

equipartition theorem classical systems have Ikot avg
energy per degree of freedom

Heat capacity G FF INKo
We assumed 2 Zin This overcounts because quantum particles are

indistinguishable zideaecmhtt ZNT NY.sn

doesn't change P or E butaffects entropy

5 It Kotlarz Nko E t In Ep Sackur Tetrode equatio

without the N entropy is not extensive the Gibbs paradox

The partition function can be thought of as feed problspeea
For a single particle Z hipfd3qd3p e

mhm

M3V
Ith p folv v2e

Rmv42

Maxwelldistr fcydvxpe
mvyzr.jp

Prob dist

Idealgas in the Grand canonical ensemblemmmmmwnmm

2 ideal M V T IoePMN2 ideal N V T exp empt
Avg rum particles N tpFmln z eBMYx3

pr KoTIN ET nottooclose

for thegas to be classical need Xu F 3
pro

to keep 5 fixedwhen we add a particle F mustdecrease

M VEN s v LO

Equation of state

grand potential OI Kotlarz pv
pv Kot et NKot recovers idealgas law

Diatomicgasmmmm

Diatomic molecules have additional degrees of freedom ft
Rotations L rot I simoom o.tocanonicalmomenta Po IIE I i

pop If Isin I
Hamiltonian trot Potopoi L EE t PI

2Isin20
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2rot he z f dodoldpodpo e PHrot
ZI ko TI f 2

rot Ip In 2rot Kot i e rotation provides an

additional 2 d of C assume Is o along symmetry axis
Vibrations model as harmonic oscillator OF

Hurt PEI t IzMoosa

Zvi Ith f docdp e B Hui KIT
HW

Evie Ke T vibration provides 2 d of
The overall partition function is Zi 2 trans 2rot Zvi
expect the heatcapacity to be Cv I Nko dunno

712

but experimentally we observe a changing value
at lowertemps some modes freeze
this is a QM effect Tik

Interactinggoisme
Idealgas law is appropriate for small number densities
General eq of state from the virial expansion

Y t RCH F t B Ct F t

Objective is to compute the virial coefficients Bict
Model the interaction between neutral atoms with the Lennard Jonespotent

Ucr E E b

PauliIepulsion IanderWaals L r

Uhalternatively can use harrdergore repulsion fromUlm FOLEY r ro

The Hamiltonian is H En Em Vi's U UCIri gl
because of the interactions Z can't be factorised into individual

particle partition fumes

2 WNIT IN man f II dpidr e B

tm.czhpwflId3pie PPi m
f.Id3riexpf p aUjk

2 WNIT IN tpnf.dkexpC p nUjk
To proceed define the Mayer F function Hr e

PVC I

far 0 as r as

Hr 1 as r o avoids singularity

2 NMT IN 4pm JI d ri n
Itf D

SII d ri z n
l t k k t gmfkfcm

f id r f k VN fol r f r after changing to relative
coordinates with a I In
independent of j r and there are far pairs

ZEN Vit
µ pn

I t'sfifdsrfcr t
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Can thus write the 2ndorder partition func as
N

2 N V T 2ideal It If fair fer

freeenergy f Kot In 2 Fdeal NkoTh It Effd3rfan

can find otherquantities using 1h Ita x

p ZF two I r t

x virial coefficient 82Ct
for a repulsive force U r o Ar Lo so pressure increases

Using the hard core repulsion model at high temperatures we get
the van der Waals equation ofstate ko F piIta kn 6

can rewrite as P N Kot and
0 he

reducedVol dueto repulsion reduced p due to attraction
nob 2T ro313 excluded volume The extra factor y

of 112 comes from considering Cfg space
add atoms one at a time fu VIV Ven V 2Vex V NVex

Quantum Gases

Consider gas in a cubic box U 47 with periodic 8Cs
For non interacting particles Y true k with Ki ni ni EZ

non relativistic particles En t 45h74 n t ny't ne
pEn

it72nd
Is Ls X so energy levees are finelyspaced

approximate sums as integrals Sdn p Id't
in spherical coordinates in K space fork 41Tfoodk K2

the state density GCE is such that gCEIDE is the nun of state
with energy F Et DE

Join Song EDE g E Ip 2 43 E
For relativistic systems E 4 g E z csfEzm2c4
for massless particles GCE 272 E

Photon gasrunsA gas of photons at fixed T is called black body radiation

E hw with A 2
g E dE 2TFIh polarisation

glwtdw Y.edu
mustsum over N

photons are not conserved photon nvm not fixed inpartitionFomc

For fixed w Zu e Nnw I e Btw
t

overall partition func Z ZZ.tn in E Enzi JinZi
0

InZ fo dwgoghZu I afdww4n I e Phu
energy E EphZ 4 I dweF
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Planck distribution Ecw da 1 effuse da
EN hot

maxwhen FE o Imax Wien'slaw µtotalenergy density E E t's T't TT
Energy flux from a point on the surface

E I JI'Tdol fo'T Cccosotsinodf Ec 000
in 4

normalcomponent

givesthe Stefan Boltzmann law flux EE E OT't
classically the world is continuous two Kot

ep hw Ecw Lift
this is the Rayleigh Jeans law classical

leads to the ultraviolet catastrophe because it diverges at small X

IndyeModelofphonorisme
Vibrations in a solid come in discrete packets of energy phonons

E t w KIKI c c valid forsmall µ linearapprox todispersion
relation

phonons have 3 polarisation 2 transverse t 7 longitudinal
wi

density of states gcw 3 zig oeage

minimum wavelength is lattice spacing max freq wot
tree

The Debye model determines Wo
equate the mum of single phonon states with the d o f both

count the nun of possible excitations

3N Sowgca dw Y we c H 3 F 3

can associate a characteristic energyHemp with Wo

the Debye temperature is Koto two
temp at which the highest freq phonon becomes excited
To hundreds of Kelvin higher for hardermaterials

Phonons are not conserved similar partition fume to photons
2w l e Phu same asphoton

InZphon fo da g w In 2 w integrate up to Wo notas
E Ep Inz

37 fitftp.idw z
yIhapLkotI4fo

e
doc

For low temp Tato Cu XP This explainsthe Dulongpetit
law which previousmodels failed topredict
For hightemp Cv 3Nko as required
In mostmaterials the heatcapacity is dominated by phonon modes

Diatomic gas QM correctionmmmwmmmrw

The classical Cv INKo only agrees with experiment for high T because
d o fs freeze out at lower temp
e.g for rotation E If th j o 1,2 with degen 2J I
2rot o 2Jti expC BhtjCjtf 121 same as

when T D b42Iko sum integral 2rot 2524classical

but for TCL Iko 2rot so rotational modes are frozen

Similar analysis for vibrational modes with E taint t
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Bose Einstein Distribution

Bosons haveexchange symmetric wavefunctions Yle E VICE E
Label single particle states such that 41ns Er Ir with nr particles
in each Ir
Canonical ensemble sum over sets nr s t nr N

2 e Mr En difficult because of nr

Easier towork in grand canonical For a given state Ir
Z e BME M l e Ber M

converges for Er M 0 for all states Eo O Mco
state occupations are independent ofeachother

2grand II I e NERm

N IpEph2grand er m I Nr
BoseEinstein

so the avg noun of particles in Ir is nr e.pe i Itn

fugacity z ePM For boson gas O CZ 4

Total nun of particles NCM T v JAEngCE fdEz F
Pressure pV IsInZor tpfdEgCE In I ze PE

gCEI x E so integrate by parts pV EfdEzE E
pv 3E

High temperaturebosongoismmm
Consider the z e Pm LCT limit

tf FLEE fide C fide 4I e

et x BE u and expand Gaussian integrals
Af s It Z Ift e else need a large

expansion only consistent if EY at 734 I
this is thus the high temp expansion
i e at constant N m must change Y const const

Z T 312

To get the Eos we need another expression for Ei

F z 7 Jo EE
sub BE 3 z

z ter 1 Fpp
H fr t

eliminate small 2 using inverted I
E E Np 1 atHunt e It 71ft I

sub pV EE pv Nkot I 7 t

at high temp classical ideal gas is recovered
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Low temperature limit Bose Einstein condensation
rumrunnersFor low temp 2 1

I t.pl t fdx Is9side
gnat is a polylogarithm gnc Fen f x I
as 2 0 93,2 Z O

convertintegral to

gnat is a monotonically increasing function of z sum

gn l 3 n Riemann zetafunction
As Tt there will be some T Tc for which 2 L

sub z 4 E mzk.IE XI
for TLR it seems that I this 931124 should decrease since 27

i e particles disappear
Themistake was approximating the sum over States as an integral

L IDE E gives zero weight to the groundstate
as Tlv the particles are condensing into the groundstate
8 E distr no 1 so as 2 I no gets large

Including theground state F 393,2 z t 1 Z
7

N is fixed as T o T K
i

for finite N 2 I YN as 1 o te t
312

frae of particles in the groundstate is Ion l Ep3134 1 Ea
at low T a macroscopic nun of particles may be in the groundstate

Bose Einstein condensate OEC

Eos P Zz Eu
k
3 gsuCH

for Tate za l p kept3CE a T independentof F

phasetransitions.mn discontinuities in physical observables

BEC formation is a phase trans
For a bosongas Eu Keats9thCz

E that Ihop 9thCH t I kIdI d
o for Tete

for Tete Ev Th a n

Cv decreases for T To map at T Te ENKot JCu 5 90gone b TTT
te t

This discontuity only exists in the N as limit
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Fermi Dirac Distribution

Wavefunction is exchange antisymmetric TCI E Vere e
Fermions obey Pardiexclusion anystate occupied by 0 or 1 fermion

A composite particle made of 2N fermions acts as a boson

Work in grand canonical
for a given state Zr Eo e PNE M Ite PCE m

2 II Zr N pFmlnZ Eepcerin Echr
thisgives the Fermi Diracdistr l

hr EPLERM 11

µ can be either positive or negative

Ideal Fermi gasMumm
Non interacting nonrelativistic E h

m

Fermions have degeneracy gs 2stl so thedensity of states is

g E Eff 43 E

N fdE fEr F Sde ELLET
increase in

pv KetInZ pV E E same as bosons pressure

High temp expansion al pV NkoTf It Yg t

Degeneratefermigoism
As 1 0

e.pe to
F M f Degeargerate Fermi
E µ

each fermion goes into the lowest energy available state until all fermions
have been used up
the Fermienergy Ep is theenergy ofthe last filled state
Ep MC F o at fixed N

Er in terms of N N ferNEgCE 6 42743 Ep
Er Em II IT

Er is the characteristic energyscale there is an associated characteristic

Fermi temperature Tf EEK Tete is low temp
Fermi momentum Kf Er HI

2M

States with 1kt a Kf are filled Fermisea
states with Ik I Kr form the Fermi surface

F 0 Eos pV ZzE ZfoEFDE EgCE NEF

pressure nonzero even at F o degeneracypressure

Lowtemperaturefermigoisum Theta
T LCTFnear F O

EEF EF
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we are interested in ECT we have E ETHEL f E I
for N fixed we must have dantIt O

off datfideep9 foodF getdattersetti

datC 7 only nonzero approximately near Er so g E 9CER

replace µ by Ef since Tsmall

day ageErtffdEfE I 0
KoshyBLEEK

unoddabout Evenabout
Ef Ef

Heat capacity G IFInn foodE Eg It enfantI
Taylor expand EgCEI ErgCEe IgCEF E Ee
Cv 39CErt Tff doc41k Cu gCED T Nk It
linear because only the fermions within Kot of Ef participate
if each acquires energy Kot E gCEAKot Kot Cu ng Ee T

Electrons in metals can be modelled as free Fermigas
heatcapacity for a metal Cu ST t xp

T
electrons phthonons

phonons dominate at high T

Pauliparamagnetisinmen
External magnetic fields cause electron spins to align
Fspin Mo Es where Mo

e
mc is the Bohrmagneton and 5 Il

T and I now have different coccupations

I I Kp DE epee nie m

Magnetisation measures how energy changeswith 0 M Fae
E Eo t MoBNa MoBNd M pro Na Na
Magnetic susceptibility X If howeasy to magnetise

At high temperatures z o I Es e't BMW

m 2M0Z_sinh Pmo8

N Np t Niu 21 cosh Pmo8 so we can eliminate z

Mx Montanh Pmo8 same as classicalmodel

susceptibility at zero field Xlo o NIET f Curie's law
At low temperatures M mo gCE B

susceptibility constant X MoigCEH
onlystates near the Fermisurface can flipspins
materials with X 0 are paramagnetic
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Classical Thermodynamics
The Zeroth Lawrum

An insulated system is one that is inside adiabaticwalls isolatedfrom
external influences

A diathermal wall separates systems in thermal contact
Equilibrium is a state in which macroscopicvariables are constant
Zeroth law trgsithrityofeqmhibriam.AT a o

Zeroth law defines a temperature scale

A C in equilibrium FacCpaVa R k O Vc fac payaPc

B C in equilibrium Vc forCpo Vo Pe
eliminate Vc facCpa VA pe forCpo Vo Pe I
Zeroth law A 8 in equilibrium Fao Ra Va Pe Vo t
t means that we can eliminate pc from C This means that
ACpa VA OoCpoVo

OLp v is the temperature F OcpV is the equation of state

The first Lawwww

First law amount of work required to change an isolated system
from state 7 2 is independent of howthe work is performed
There is some function of state FCp v energy such that OE W

A non isolated systemmay also gainenergy via heat transfer

1st law is conservation of energy OE Q t wmmmm

A quasistatic process is one for which the sys is always in
equilibrium though the 1stlaw can describe violent changes

can write 1st law infinitesimally DE dQ t d W
E is a fume of state so de is a total derivative
however Q W are not functions ofstate so dQ dW only
mean thatthe quantities are small

For compression d W p du work done one system

JAE EcpaVa FCpi Vi independent ofpath P Pair

c Etftw fi pdu depends on path in

TheSecond Lawmhm

A reversible process is a quasistatic process that can be run backwards

For a closed loop on a PVdiagram P
Pa

DE 0 since E is a fume of state
but pdV FO p
1stlaw dQ fopdu v vz v

i e reversible cycles can convert heat work
Second law Kelvin no process is possible whose sole effect is
to convertheat entirely into work
Second law Clausius no process is possible whose sole effect is
to transfer heat from a colder to a hotterbody
2ndlaw defines an arrow of time e g Clausius hot 1 cold
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Kelvin violator Clausius violator Hot
w t 04

net Qu Q Qc transferred from
Q e

cold to hot cold
Clausis violator Kelvin violator Hoff QH Wengine

Qe
Cold

Carnotcycter
Reversible cycles do not violate Kelvin's 2nd law because
they deposit heat
Carnot cycle
p n t n

Tn

f
n u

X E goout
s v s s

Isothermal expansion at Tn Qa absorbed from hot res
Adiabatic expansion Tt
Isothermal compression at Tc Qc dumped into cold res

Adiabatic compression T T

Work done is W Qu Qc with efficiency y WE 8
7 1 would violate Kelvin's 2ndlaw

Carnot's theorem of all the heatengines operating between two
heat reservoirs a reversible engine has the highestefficiency

prove bycoupling anotherengine to drive tow
a Carnot pump
net effect is to extract Qu Qr of tE
heat Clausius Qu 2 Qu ME the

Corollary all reversible engines have the same efficiency 7 Tn Te
use a carrot engine to drive the other engine in reverse
ME Emc and Mc EME MEME

The Carnot cycle defines a thermodynamictemperature scale
let T Ts T and consider 2 Carnotengines operating between

Fitz and Ta Ts respectively
Q2 Q I MCT Tz and Q QI l m Tats

Q Q I MCT Tz l h Tz B
but can also treat as one engine between Ti B
o Q Qi l N T Tz T2 Mus

l M T BD l nCti Tz l n ta B Ts cancel
I MLT Tz HEYECT

we can choose fCT T
This definition of temperature coincides with the ideal gastemp
isotherms Qu InpdV fat N dV NKoTnIncVfa

Qc NKotch Volk similarly
adiabats dQ o dE CvdT pdV Tv const
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Valve Volvo

n i Ean it II initial I Ii Erie
4 Carnot

Entropy of reversible processesmuumuu

For a Cournotcycle Qu Tr Qc
a

0 Eoheataborted

A general path can be splitinto infinitesimal adiabats
and isotherms

for a general reversible process If o

this implies d is path independent function of state
call this entropy coincides with previousdefinition

For an irreversible engine 0 0 CEREED th o
0 becauseofi efficiency

for a general irreversible path If E 0 Clausius inequality

consider paths I and I If SIAff f d n reversible o

SIdit e SCO SCA irrevers
A II

for an isolated system dQ o SCO 3SCA

Thermodynamicpotentiate
The state of a system can bespecifiedusing 2 of i

p V E T S
each has hatural variables e g DE Tds pdV EECS v

mixed partialsgive Maxwellrelations Ifa EI fff

Can define different potentials
Helmholtz Ts dF Sdt pdu each ha
Gibbs

i F E
G Etp V TS d G SIT Vdp a Maxwell

Enthalpy H f pv dH Tds rap
relation

Mnemonic Good Physicists Have Studied UnderVery Fine Teachers

naturalvariables next to potential S U v
differential opposite corners for coeff then H F
followdiag to get differential nosign p G T
Maxwell relations L J and rotations

e s f pl't Cfpl Efp

It particle numbermay vary we must add pedN
G is extensive GCT p TN X GCT p N

GCTp N MCT p N M iv Gibbsfreeenergy
per unitparticle

ThethirdLaivm
Third law I 0 as 1 O and N as

ie ground state entropy is not extensive
provides an absolute reference for entropy

Heat capacities O as T o since SCO SCA ffdT
classical ideal gases violate this
low temperatures need QM
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Phase Transitions

A phase transition is a discontinuous change in systemproperties

Liquid Gastransitionumn
i van der Waals equation p 4 ft using

shape of isotherm depends on temperature p

at high T ignore Ez monotonically T Te

hatchet
there is a saddlepoint

Zf O EffiO Kotc 8 the c
b v

For Tate a given pressure can correspond to several densities
solution 8 is unstablebecause froth 0
solution A has closely packed and is hard to compress since
1371 is large this is a liquid

Two phases are in equilibrium when
1 Same temp satisfied for A 8 c since an isotherm

2 Same pressure

3 Same chemical potential i e Mliquid Mgas

Equilibrium only depends on intensive quantities so we can scale up
Nliquid and Ngas

To solve Mliquid Mgas vary M pit along an isotherm
dm FLIP dp GCp T N p pit N

dG Sdttvdp µdN
Fp L Zf n

starting at Miguid and integrating Mlp tt pyqm.at pgm.adP END

for Miiquid pugas the integral must vanish A

this is the Maxwell construction areas

of shadedregions must be equal for
liquid and gas to coexist b us

For a fixed Tctc there is a unique equilibrium pressure
the set of all these pressures defines the coexistence curve
inside the curve average density may vary between the
liquid andgas densities

if we cool a particularsystem to a pointinside the curve it

will undergo phase separation liquidand gas coexist

coexistence
curve

metastable

spinodial curveInstable

The coexistence curve encompasses the unstable regions where Catti 30

but also metastable regionswhere 17 co
thesestates between spinodial and coexistence curves have higher
6 than the liquidgas eq but can be reached supercooling
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Clausius Clapeyron equationmummer
On the P T plane the co existence curve P critical

becomes a line phase boundary
d point

crossing the boundary involves a discontinuous gas
change in volume Tc t

for T Tc there is no distinction between liquid and gas
i.e continuous change in volume

On the phase boundary g gg Em Ing
d G Sdt Vdp dg Scott Vedp

d9g SgdT gdp
QuapntItiffeper

setting dgedgg we get an expression for the slope
of the phase boundary dtat s hug up
define the specific latentheat L TCsg Sc
Clausius Clapeyron equation dddt TFu.iq

A phase transition is nth order if the nthderivative of a thermodynam

potential is discontinuous Ehrenfestclassification

liquidgas is 1storder CIFL ptt are discontinuous

as 1 Tc Se Sg so the discontinuity diminishes becomes

a 2nd order transition

Thelawofcorrespondingstatermann pn
At the critical point IF Its O

type
Alternate derivation rearrange vdW into acubic t

pp plotKot v't au ab O
TLRat T Tc the equation goes from having 6 8

3 real roots to 1 so at Tc all 3 coincide
pc v vc

3
o

Koti 76 ve 36 Pc 62

We can rewrite the vdWequation using reducedvariables
F Ite J Yue D Bpc and write a b in terms of
critical quantities should now apply to all gases
result is the Law of corresponding States p y Ez
universal compressibility ratio Pfaff 3

8 0.325

vdW overestimates compressibilities

Plotted in the p F plane coexistence curves of many different

gases coincide universality

Critical exponentsrumrunner

we can analyse how quantities vary near the critical point then

compare with experiment
How does Vg Vi vary along the coexistence curve as 1 Tc

Law of corresponding states gives Flusas Viiquia
expand in small Vg Vi to get y ve Ch T
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How does the volume change with pressure along the critical isotherm

at F Tc pressure is single valued

If If o p R Cu ve
Define the compressibility RE TIPIt How does IT change

as 1 Tc
at the critical point Zulte o IT It ve T Tc

K CT Te
so K diverges as 1 To

Experiments do notsupport these results even though we only
assumed analyticity

Vg Vi CT Te B B 0.32

p p n C v VIS S 4.8

K Ct Tay o E
critical exponents

These discrepancies arise from fluctuations

in grand canonical Ef In density fluctuations diminish

In 2grand Bp Tim V
w TpFmlnZar V ZnItv and 0W tp7Th It v

If Ep Ffl in
using the cyclic relation OF t SI pi I p m t

K

H diverges as T Tc so fluctuations become large

The Ising Model

king model a d dimensional lattice of N spins with s I

Two contributions to lattice energy
1 Interactions of spins with magnetic field
2 Interactions of neighbouring spins

E J sis 8 Esi
energy of

Li's sums over the q 2d nearestneighbours
configuration

d
If J 0 spins prefer to be aligned ferromagnetic m

Work in canonical ensemble N fixed z e BE

magnetisation is the average spin m tu Csis tap Ffs
The partition tune can be approximated using mean field theory
for small fluctuations

Sis Si m tm j m tm Si m Sj m m sits 2M tm

neglect Csi mics m Emf J Gits my 8 si

there are Nok nearest neighbour pairs
Emf JNqm Tqm 8 si

this is now just a 2statesystem with Beef ft Jem
with the MFapprox we have 2 e'tBJN9m 2NcoshNpBeff

can self consistently solve for m m tanh PBtPJqm
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If 8 0 m tanh Bjorn solve graphically m

tanh poem PJqm near the origin Ifor PJq4 high temp the only solution is m o

Thermal fluctuations dominate

if PJq 1 there are 3 solutions m o is tan
Mo

unstable but m Imo are stable
Mat some F Tc given by BJq l there is T
IT T

a discontinuous change in magnetisation v
m

For 8 TO magnetisation 0 smoothly as 1 s t't
T

at low temperatures the onlystable solution has Too
m sign O other 2 are unstab e

restorderphasetrans
m changes discontinuously if we vary 8 so

there is a phase boundary on the B T plane 92 T

V

Criticalexponentme
How does m vary as 1 Tc from below 8 0

Taylor expansion of tanh m BJEM J BJqm
3
t

mo n Te T turns off abruptly when F Tc

analogous to Vg Vi CT T for liquidgas vdW
How does m vary with 8 at T Tc
BJq I m tanh Eq my mtg sCmtFg t

m x B 3 analogous to Vc Cp Pe 3 from vdW

How does the susceptibility X Wfff vary as 1 Tc

from above 8 0

X
NI

cosh4BJqm It INX
1 To m o X Ffp Ct Te

X diverges similar to compressibility

For del MFT is completely wrong no phase transition

For d 12 MFT is qualitatively correct but quantitatively wrong
e g for d 2 mo Te T P B 118

m B t
8 15

X Ttc 8 8 74
d 3 measured values of critical exponents are the same
as for the liquidgassystem

For d 4 MFT is very nearly correct
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Landau theorymmmm

Landau theory is a unified way of understand phase transitions

applies to allsystems
MF approx for king Z e

BJ9Nm 2NcoshYppeff
F IpInZ I JNqm Nph Kosh BBeff

0 Landau theory considers FCm without finding the correct

self consistent value of m
agreeswithprevious

equilibrium config IFM o m tanh poet result

In Landau theory m is an order parameter M 0 ordered

m to random

for general systems the order parametershouldbe finite
below Tc but vanishes above Tc
e.g for liquid gassystem use m Uga Vliquid

we can then expand the free energy in the vicinity of Tc
where m is small

Assumethe free energy is symmetric in m as in Ising with E o

expansion FCT m foCT t act m t bCT m t

assume but 0 such that FT for large m so equilibrium
behaviour depends on the sign of act
ACTc I 0 so as T decreases we go from aCT O act co

n F r F

v

act o act LO

can beshown that this is a 2ndorderphase transition
Typically act aoCTTc and KT bo
ZIM o mo fat Te T for Tate
this reproduces the critical exponent of the king vdWsystems

1storder phase transitionmmmm

Now we allow asymmetry in M e.g 870 Ising model

f CT m Fo T t 4T M t a CT m t JCT m t 6Lt m Tt

as before assume 6CT O

as 8 changes from ve to ve X and 8 change sign
for low temperatures a nonzero field results in 1 stable equilibrium

metastable

f
At high temperatures the metastable equilibrium disappears U m
at the spinodialpoint
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Landau Ginzburg theorymurmur

Corrects Landau theory by including fluctuations in the order param
order param becomes MCE
free energy now has a stiffness that resists changing m

free energy is now a functional eg in symmetric case

F nice foldn act m t bCt m 4 tact m t

Minimise using the calculus of variations
m re merit dmCI
SF fold 2amSm 46m38m 2C Pm Psm t

fold 2am t 46ms 202Mt Sm

SF O c Em am t 26hr3

m const recovers Landau theory
in 40 Landau Ginsberg theory describes domain walls
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