Statistical Physics

Objective is to understand macroscopic behaviour of a system with many particles (-10^{33}) e.g. P.T. V.S

Microcanonical ensemble

- · Consider an isolated N-particle system (N large) with fixed energy E.
 - La instantaneously obcys H147 = E142, where 147 is the microstate, describing every particle's behaviour.
 - b) a macro system can be made of many microstates with the same energy.

Fundamental assumption: in equilibrium, all accessible microstates are equally likely

4) equilibrium → steady state with constant macro quantities
4) accessible → can be reached by small perturbs. (at fixed E)
· Ω(E) counts the number of states with energy E
· Entropy : S(E) = K_B In Ω(E)
b) if we combine systems with E₁, E₂, Ω(E₁, E₂) = Ω(E₁) Ω(E₂)
⇒ entropy is additive: S(E₁, E₂) = S(E₁) + S(E₂)
b) S ∝ N so it is an extensive quantity

2nd law of thermody namics · Consider two isolated systems with E1, E2 -> bring together and allow them to exchange energy. Etot = E, +E2 is fixed. · Total num states is $\Omega_1(E_1) \Omega_2(E_2)$ summed across every possible value of E, E { E; } $(E_{tot}) = \sum_{s \in i} \mathcal{L}_1(E_i) \mathcal{L}_2(E_{tot} - E_i)$ = $\sum_{S \in S} \exp\left(\frac{S_1(E_i)}{K_0} + \frac{S_2(E_{tot} - E_i)}{K_0}\right)$ is the sum will be dominated by the E: = E* that maximics the exponent. $\frac{\partial S_1}{\partial E} = E^* - \frac{\partial S_2}{\partial E} = E_{101} - E_* = 0$ $L_{3} S(E_{tot}) = K_{B} \ln \Omega(E_{tot}) \simeq S_{1}(E_{*}) + S_{2}(E_{tot} - E_{*}), \text{ but}$ $S_1(E_*) + S_2(E_{tot} - E_*) \ge S_1(E_1) + S_2(E_2)$ by def. of E_* \Rightarrow $S(E_{tot}) \gg S_1(E_1) + S_2(E_2) \in 2^{nol} law$ Temperature · Pefine as $\frac{1}{7} = \frac{2S}{2E}$. This satisfies O^{th} law (no energy transfer between equal temps): $L = T_1 = T_2 \implies \frac{2S_1}{2E_1} = \frac{2S_2}{2E_2} \implies \text{the is the condition for max entropy}$ 13 entropy already maximised => no energy transfer. · If T, #Tz, there will be an energy transfer $\int \int S = \frac{\partial S}{\partial E} \Big|_{E=E_1} \delta E_1 + \frac{\partial S}{\partial E} \Big|_{E=E_2} \delta E_2$ = 6E1 (+1 - +2) ≥0 Lo so if T, >T2, SE, <0 (hot → cold)

T can be negative if SV as ET, c.g spin systems b) in practice, these systems are coupled with surroundings with T > 0b) negative T (hotter' them infinite T The heat capacity (at constant volume) is $C_v = \frac{\partial E}{\partial T}$ b) allows us to relate S to measurable quantities $\frac{\partial S}{\partial T} = \frac{\partial S}{\partial E} \frac{\partial E}{\partial T} = \frac{C_v}{T} \Rightarrow \Delta S = \int_{T_1}^{T_2} \frac{C_v(T)}{T} dT$ b) $\frac{\partial^2 S}{\partial E^2} = -\frac{1}{T^2}C_v$, so if (v>0, S(E) is concave down Count $\Omega(E)$ using combinatorics K which combinations of $N_1, N_2, ...$ 1. Count $\Omega(E)$ using the Boltzmann entropy 3. Approximate factorials with Sticling's formula: $\ln N! \approx N \ln N - N$ 4. Replace $N_1, N_2, ...$ with Noted and ES. Find temp. with $\frac{1}{T} = \frac{\partial I}{\partial E}$ and invert to get E(T).

1st Law of Thermodynamics • Num. states depends on the volume V. $\Rightarrow S(E, V) = K_B \ln Q(E, V)$ $\Rightarrow as before \frac{1}{T} = \begin{pmatrix} 2s \\ 3E \end{pmatrix}_{V}$ $\Rightarrow we define preserve to be <math>T(\frac{2s}{3V})_E$ • Consider bringing together systems with P., P. (same T) with a movable partition (but Vto) = const)

4> maximizing entropy: $\frac{\partial S_1}{\partial v}|_{v=v_1} = \frac{\partial S_2}{\partial v}|_{v=v_2} \Rightarrow P_1 = P_2$ to agrees with physical intuition. · Use definitions of T, P to derive the 1st law: $S = S(E, v) \Rightarrow dS = \begin{pmatrix} \exists J \\ \exists E \end{pmatrix}_{v} dE + \begin{pmatrix} \exists J \\ \exists V \end{pmatrix}_{E} dV$ ⇒ dE = TdS-pdV heat transferred to system is work done on system at fixed temperature microcanonical had fixed energy Canonical Ensemble · Consider an ensemble in thermal eq. with large reservoir R with temp. T is sys has negligible energy compared to R [sys) benergy of system is no longer fixed Reservoir . Let In> be a state of sys with energy En. The num. of microstates in sys+R can be found by summing over states cike before Is $\mathcal{L}(E_{tot}) = \sum \mathcal{L}_{R}(E_{tot} - E_{n}) \ll \alpha_{m}$ have duplicate E_{n} = Zexp[1 SR(Etot-En]] Is but Etot >> En so we can Taylor expand Sa(Etot - En) => - Q(E+o+) = E exp [1 KB (SR(E+o+) - 25 / E=E+o+ En)] $= \exp\left[\frac{\int_{R}(f_{tot})}{K_{R}}\right] \quad \sum_{n} \exp\left(-\frac{f_{n}}{K_{R}}\right)$ • The probability that sys is in state $|n\rangle$ is: $P(n) = \frac{num \text{ states with } E_n}{\text{total num states}} \implies P(n) = \frac{e^{-E_n/K_BT}}{\sum e^{-E_n/K_BT}} = \frac{1}{2(B)}e^{-BE_n}$

b) this is the Boltzmann distribution. Ly $\beta \equiv \frac{1}{K_{BT}}$ and $Z(B) = \sum_{m} e^{-\beta E_{m}}$ is the partition function Ly if $\beta E_{n} >> 1$, P(n) is small. VERY USEFUL. Ly if $\beta E_{n} <<1$, P(n) is closer to 1.

- The partition function of a combined system is the product of the subsystem's: $Z = \sum_{n,m} \exp(-\beta E_n^{(1)} - \beta E_m^{(2)}) = \sum_{n} e^{-\beta E_n^{(1)}} \sum_{m} e^{-\beta E_n^{(2)}} = 2, 2, 2, 3$ • Enorgy in the canonical ensemble: $G \langle E \rangle = \sum_{n} p(n) E_n = \frac{1}{2} \sum_{n} E_n e^{-\beta E_n} = -\frac{1}{2} \frac{\partial 2}{\partial \beta} \Longrightarrow \langle E \rangle = -\frac{\partial \ln 2}{\partial \beta}$
- Les similarly, $(\Delta E)^2 = \langle E^2 \rangle \langle E \rangle^2 = \frac{\partial^2 \ln 2}{\partial R^2}$ Let the heat capacity is $C_V = \frac{\partial \langle E \rangle}{\partial T} = (\Delta E)^2 / k_B T^2$ $C_V \propto (\Delta E)^2$ is extensive $\Rightarrow \Delta E \propto \sqrt{N}$. Le energy is extensive $\Rightarrow \frac{\Delta E}{E} \sim \frac{1}{\sqrt{N}}$ Let in the thermedynamic limit $(N \Rightarrow \infty)$, $\frac{\Delta E}{E} \Rightarrow 0$, i.e. the fluctuations around the ang are small
- L> we thus write $\langle E \rangle = E$

Is in this limit, canonical as microcanonical ensembles are equivalent.

Gibbs Entropy

L) $S_{W} = K_{B} \ln \Omega = -K_{B} W \leq p(n) \ln p(n)$ (Stirling) L> entropy is additive \therefore for one system, $S = \frac{S_{W}}{S_{W}}$ L) gives $S = -K_{B} \leq p(n) \ln p(n)$ $\in Gibbs entropy$ (a.k.a. Shannon, von Alenmann)

Free energy

• When T=D, the ground state minimises energy. • Generally, the most likely state minimises the Helmholtz free energy $J_{2} = E - TS$ $J_{3} = F$ is the capacity to do work (at fixed temperature). • Proof: $J_{3} = F$ is the capacity to do work (at fixed temperature). • Proof: $J_{3} = F$ is the capacity to do work (at fixed temperature). • Proof: $J_{3} = F$ is the capacity to do work (at fixed temperature). • Proof: $J_{3} = F$ is the capacity to do work (at fixed temperature). • Proof: $J_{3} = F$ is a temperature that energy E is $P(E) = -D_{3}(E) = -E/k_{0}T/2$ $J_{3}(E) = \frac{1}{2}e^{S/K_{0}}e^{-E/K_{0}T} = \frac{1}{2}e^{-BF}$ $J_{3} = F$ is a tegendre transformation of S(E, v): $J_{3} = F = F = TS \Rightarrow dF = dE - TdS = -SdT - pdV$ $J_{3} = Maxim that matimal to consider <math>F = F(T, v) \Rightarrow S = -(\frac{DF}{2T})v$, $P = -(\frac{DF}{2V})_{T}$ • Can show that $F = -K_{0}T \ln 2 \Rightarrow Z = e^{-BF}$ Chemical Potential

In some systems, num particles N may change (e.g permeable membrane)
L> S(E, V, N) = Ko In Q(E, V, N)
Gefine the chemical potential to be M = -T BS
M = M2 in equilibrium
The 1st law becomes dE = TolS- pol V + m dN
G is the energy cost of adding a particle at fixed S, V
M = (BE) S.V
H elim holtz free energy: dF = -SolT-polV + m dN

Grand Canonical Envertble

The Grand Camonical Ensemble is in thermodynamic eq with a large reservoir of fixed m and T

5 particle num. can now fluctuate in addition to energy.

> reservoir much larger than system

· Prob. that system is in microstate In> with En, Nn is:

 $\rho(n) = \frac{1}{2(T_{,m},N)} e^{-\rho(E_{n}-\mu N_{n})}, \quad \mathcal{Z} = \underset{n}{\leq} e^{-\rho(E_{n}-\mu M_{n})}$

4) 2 is the grand partition function, from which other quantities can be derived 4) $\langle E \rangle - \mu \langle N \rangle = -\frac{3}{2} \ln 2$, $\langle N \rangle = \frac{1}{p} \frac{3}{2p} \ln 2$

- · All three comonical ensembles coincide in the thermodynamic limit.
- the grand canonical potential is $\hat{\Phi} = F \mu N \Rightarrow d\hat{\Phi} = -SaT pdV Nd\mu$ $J = -K_{\theta}T \ln 2 \Rightarrow 2 = e^{-\beta \hat{\Phi}} \in Same form as canonical with F.$

Extensive vs Intensive quantities • Extensive quantities scale with the size of the system rightarrow e.g N, V, F, S $rightarrow for each of these, can write <math>S(\lambda E, \lambda V, \lambda N) = \lambda S(E, V, N)$, AER • Intensive quantities are independent of size, e.g $\frac{1}{T} = \frac{\partial S}{\partial E}$, $P = T \frac{\partial V}{\partial V}$, $M = -T \frac{\partial S}{\partial N}$ • Extensive x intensive = extensive rightarrow e.g F = E - TS is extensive $\Rightarrow F(T, \lambda V, \lambda N) = \lambda F(T, V, N)$ \Rightarrow many functional forms satisfy this, e.g. $F \sim \frac{V^{n+1}}{VN^n}$ • $\overline{\Phi} = F - mN$ is extensive $\Rightarrow \Phi(T, \lambda V, M) = \lambda \Phi(T, V, M)$ \Rightarrow unlike for F, this is only true if $\Phi \propto V$ $rightarrow V = P \Rightarrow \overline{\Phi} = -P(T, M) V$

Classical Gases

• The quantum partition func is $2 = \sum_{states} e^{-\beta E_n}$ · Classically, specify state with phase space coordinates of every particle Ly for a single particle $H = \frac{1}{2m} |f|^2 + V(q)$ Ly this gives $Z_1 = \int_{arth}^{1} \int d^3p d^3q e^{-\beta H} e^$ • An ideal gas is N non-interacting particles in a box $b H = |B|^2 / 2m \implies Z_1(V,T) = \frac{1}{(2\pi\pi)^3} \int d^2 p \, d^3 p \, \exp\left[-\frac{P \, H P l^2}{2m}\right]$ $= V \left(\frac{\kappa_{eTm}}{2\pi t^2} \right)^{3/2} \equiv \frac{V}{\lambda^2}$ L> A is the thermal de Broglie wavelength. La the partition function is then $2(N, V, T) = \frac{V}{2} \frac{1}{3} \frac{1}{$ Pressure: $p = -(\frac{\partial f}{\partial v})_T = \frac{\partial}{\partial v} k_0 T \ln 2 = \frac{N k_0 T}{V} \epsilon i deal gas law$ · Energy: $\langle E \rangle = -\frac{2}{3\beta} \ln 2 = \frac{3}{2} N k_B T$ 5 equiportition theorem: classical systems have { keT any energy per degree of freedom. · Heat capacity: Cv=(祭), = 星NKB . We assumed $Z = Z_1^N$. This overcount, because quantum particles are industinguishable. Zideal $(N, V, T) = \frac{Z_1^N}{N!} = \frac{V^N}{MD^{3N}}$ Is doesn't change P or E, but affects on tropy: S= $\frac{2}{2T}$ (keTInZ) = IVKe [$\frac{5}{2}$ + In ($\frac{V}{N\lambda^3}$)] < Sackur - Tetrade equation

Is without the N!, entropy is not extensive -> the Gibbs paradox

 The partition function can be thought of as speeds prob(speed)
 For a single particle: Z₁ = (¹/₂₀₄)³ ∫ d³q d³p e^{-Bp³/2m} = ^{m³V}/₍₂₀₄)³ ∫ d³ v v²e^{-Bmv²/2}
 Maxwell distr.: f(v)dv & v²e<sup>-mv³/2kell</sub>
</sup>

Ideal gas in the Grand canonical ensemble
· Zideal (M, V, T) = Že (PMN Zideal (N, V, T) = exp(e^{PM}V/\lambda³)
· Avg num particles: N = J²/_P h Z = e^{An}V/\lambda³
· b m = KeTIn(
$$\frac{\lambda^{3}N}{V}$$
)
· for the gas to be classical, need $\lambda < < (\frac{V}{N})^{1/3} \Rightarrow m < 0$
· to keep S fixed when we add a particle, E must decrease
·· m = ($\frac{OE}{\partial N}$) S, V < 0
· Equation of state:
· grand adapted $\overline{D} = -KeTInZ = -\rho V$

Lequation of state:

$$rightarrow grand potential $\tilde{\Phi} = -K_B \Gamma \ln z = -pV$
 $rightarrow potential $\tilde{\Phi} = -K_B \Gamma \ln z = -pV$
 $rightarrow potential $\tilde{\Phi} = -K_B \Gamma \ln z = -pV$
 $rightarrow potential $\tilde{\Phi} = -K_B \Gamma \ln z = -pV$
 $rightarrow potential $\tilde{\Phi} = -K_B \Gamma \ln z = -pV$
 $rightarrow potential $\tilde{\Phi} = -K_B \Gamma \ln z = -pV$
 $rightarrow potential $\tilde{\Phi} = -K_B \Gamma \ln z = -pV$
 $rightarrow potential $\tilde{\Phi} = -K_B \Gamma \ln z = -pV$
 $rightarrow potential $\tilde{\Phi} = -K_B \Gamma \ln z = -pV$
 $rightarrow potential $\tilde{\Phi} = -K_B \Gamma \ln z$
 $rightarrow potential $\tilde{\Phi} = -pV$
 $rightarrow$$$

Diatomic gas
Diatomic gas
Diatomic molecules have additional degrees of Freedom
· Rotations:
$$\mathcal{L}_{rot} = \frac{1}{2}I(\dot{\theta}^2 + \sin^2\theta \dot{\phi}^2)$$

 \Rightarrow canonical momenta: $\rho_{\theta} = \frac{\partial \mathcal{I}}{\partial \dot{\theta}} = I\dot{\theta}$
 $\rho_{\theta} = \frac{\partial \mathcal{I}}{\partial \dot{\theta}} = Isin^2\dot{\phi}$
 \Rightarrow Hamiltonian: $H_{rot} = \dot{\theta}\rho_{\theta} + \dot{\theta}\rho_{\theta} - L = \frac{\rho_0^2}{2I} + \frac{\rho_0^2}{2Isin^2\theta}$

5 Zrot = (2##12 Jdodødpedpe e-BHrot $= 2I K_B T/t^2$ 5(Erot) = - 30 In Zrot = KET, i-e rotation provides an additional 2 d.o.f < assume Iz=0 along symmetry axis · Vibrations: model as harmonic oscillator anno $\square M_{vib} = \frac{\beta_{se^{L}}}{2m} + \frac{1}{2} M \alpha v^{2} sc^{2}$ $L_{r} = \frac{1}{2\eta \hbar} \int dx df_x e^{-\beta H_v i \delta} = \frac{k_{\theta} T}{\hbar \omega}$ La (Evio) = KOT => vibration provides 2 d.o.f · The overall partition function is Z1 = Ztrans Zrot Zvib Is expect the heat capacity to be $C_v = \frac{2}{2} N K_B = \frac{C_v / N K_B}{2 N K_B}$ but experimentally we observe a champing value SR bat lower temps, some modes (freeze) 1) this is a QM effect. TIK

Interacting gas

- · Ideal gas law is appopriate for small number densities.
- · General eq. of state from the virial expansion:

 $\frac{p}{\kappa_{\rm e}\tau} = \frac{N}{\sqrt{2}} + \theta_2(\tau) \left(\frac{N}{\sqrt{2}}\right)^2 + \theta_3(\tau) \left(\frac{N}{\sqrt{2}}\right)^3 + \cdots$

- · Objective is to compute the virial coefficients B:(7)
- · Model the interaction between newtral atoms with the Lennard-Jones potential

$$U(r) = \left(\begin{array}{c} \frac{r_{0}}{r} \right)^{12} - \left(\begin{array}{c} \frac{r_{0}}{r} \right)^{6} \\ \frac{r}{r} \\ Powli \ iepulsion \quad Van \ der \ Waals \end{array}$$

L's alternatively, can use hard core repulsion $U(r) = \begin{cases} \infty & r < r_0 \\ -U_0(\frac{r_0}{2})^6 & r > r_0 \end{cases}$ • The Hamiltonian is $H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i>i} V_{ij} \in U_{ij} = U((r_i - r_j))$ 1> because of the interactions. 2 can't be factorized into individual particle partition Funcs $Z(N,V,T) = \frac{1}{NI} \frac{1}{(2\pi\hbar)^{3N}} \int \prod_{i=1}^{N} d^{3}\rho_{i} d^{3}r_{i} e^{-\beta H}$ $= \frac{1}{N!} \frac{1}{(2\pi\pi)^{3W}} \int \prod d^{3}\rho_{i} e^{-\beta \rho_{i}^{2}/2m} \int \int \prod d^{3}r_{i} e_{A}\rho(-\beta \sum_{j>K} U_{jK})$ $\mathcal{Z}(W,V,T) = \frac{1}{N!} \frac{1}{\lambda^{3}N} \int \prod_{i=1}^{N} \sigma_{i}^{3}r_{i} \exp(-\beta \sum_{i=1}^{N} U_{i}r_{i})$ To proceed, define the Mayor F function : $f(r) = e^{-\beta V(r)} - 1$ Ly f(r) → 0 as r→∞ L> f(r) → -1 as r → 0 (avoids singularity) $\Rightarrow \mathbb{Z}(N,V,T) = \frac{1}{N!} \frac{1}{\lambda^{2N}} \int \prod_{i} d^{3}r_{i} \prod_{j>h} (1+f_{jh})$ 1 + 5k fjk + 5k fjkfem +... $\int \int \int d^3r \, d^3r \, = V^N$ b (Ti d³r; fik = V^{N-1} (d³r f(r), after changing to relative coordinates with $r = r_i - r_{in}$ 13 independent of j, K and there are -1 N2 pairs $\Rightarrow Z(N, V, T) = \frac{V^{N}}{N! 2^{3N}} \left(1 + \frac{1}{2} \frac{N^{2}}{V^{2}} \int d^{3}r f G + \cdots \right)$

· Can thus write the 2nd order pourtition Func as:

 $Z(W, V, T) = Zideal \left(1 + \frac{N}{2V} \int a^{3}r f(r) \right)^{N}$ 4 free energy $\Rightarrow F = -k_{B}T \ln Z = Fideal - Nk_{B}T \ln \left(1 + \frac{N}{2V} \int d^{3}r f(r) \right)$ 4 con find other quantities using $\ln (1+x) \approx x$ 4 $\rho = -\frac{\partial F}{\partial V} \Rightarrow \frac{PV}{Nk_{B}T} = 1 - \frac{N}{2V} \int d^{3}r f(r) + \dots$ 5 $\sqrt{Nk_{B}T} = 1 - \frac{N}{2V} \int d^{3}r f(r) + \dots$ 5 $\sqrt{N} \times \text{ virial coefficient } B_{2}(T)$

· For a repulsive force, U(r) >0 => F(r) <0, so pressure increases.

Vsing the hard-core repulsion model at high temperatures, we get the van over Waals equation of state Ke T = (p+1)²a) (V - 6)
⇒ can rewrite as P = NKET - a N² veduced vol. due to repulsion ⇒ reduced p due to attraction
⇒ b = 2π ro³/3 ≈ excluded volume. The extra factor of 1/2 comes from considering cfg space
⇒ add atoms one at a time: fry V(V - Verc) (V - 2 Verc)...(V - NVerc)

Quantum Gases

• Consider gas in a cubic box $(V=L^3)$ with periodic B.Cs • For non-interacting particles, $\Psi = \frac{1}{\sqrt{V}}e^{i\frac{1}{2}\cdot\frac{1}{V}}$ with $k_i = \frac{2}{\sqrt{L}}\pi_i$, $n_i \in \mathbb{Z}$ \Rightarrow non-relativistic particles: $E_n = \frac{1}{\sqrt{2m}}e^{i\frac{1}{2}\cdot\frac{1}{V}}$ $(n_x^2 + n_y^2 + n_z^2)$ $\Rightarrow \beta E_n = \frac{\pi \lambda^2 n^2}{L^2} \Rightarrow L >> \lambda$ so energy leads are findly spaced. \Rightarrow approximate sums as integrals: $\Xi_n \simeq \int dn = \frac{1}{\sqrt{2\pi}}\int d^2k$ \Rightarrow in spherical coordinates in k-space, $\int d^3k = 4\pi \int_0^{\infty} dk k^2$ \Rightarrow the state density g(E) is such that g(E) dE is the num of states with energy $E \Rightarrow E + dE$. $\Rightarrow \int d^4n = \int_0^{\infty} g(E) dE \Rightarrow g(E) = \frac{1}{\sqrt{4\pi^2}} (\frac{2m}{\pi^2})^{3/2} E^{1/2}$ • For relativistic systems, $E = \sqrt{\pi^2 k^2 c^2 + n^2 c^4} \Rightarrow g(E) = 2\frac{\sqrt{E}}{2\pi^{44} k^2 c^2} \int \frac{E^2 - m^2 c^4}{E^2}$

Photon gas

• A gas of photons at fixed T is called black-body radiation
•
$$E = \hbar\omega$$
, with $\lambda = \frac{2\pi c}{\omega} \implies g(E)dE = 2 \cdot \frac{vE^2}{2\pi^2\hbar^3c^3}$ polarizations
 $G(\omega)d\omega = \frac{V\omega^2}{\pi^2c^3}d\omega$
 $G(\omega)d\omega = \frac{V\omega^2}{\pi^2c^3}\int_{0}^{\infty}d\omega \frac{\omega^3}{e^{B\phi\omega}-1}$

• Planck distribution: $E(\omega)d\omega = \frac{Vt}{\pi^2c^3} \frac{\omega^3}{e^{\beta\hbar\omega}-1} d\omega$ Is max when $\frac{dE}{d\omega} = 0 \implies 2\pi\omega = \frac{b}{T} \in Wien's law}{5} total energy density: <math>E = \frac{F}{V} = \frac{\pi^2 k_B^4}{15 \hbar^5 c^3} T^4$ • Energy flux from a point on the surface: Is $E \cdot \frac{1}{4\pi} \int_0^{2\pi} d\varphi \int_0^{\pi/2} (c \cos\theta) \sin\theta d\theta = \frac{Ec}{4}$ rormal component. Is gives the Stefan-Boltzmann law: flux = $\frac{Ec}{4} \equiv 0-T^4$ • Classially, the world is continuous \Rightarrow that $4 \times BT$

Ly $e^{\frac{1}{\beta^{+}W}} = 1 \approx \frac{1}{\beta^{+}W} \implies E(w) \approx \frac{\sqrt{w^{2}k_{\theta}T}}{\pi^{2}c^{3}}$ Ly this is the Rayleigh-Jeans law (classical) Ly leads to the ultraviolet catastrophe because it diverges at small λ

Debye Madel of Phonons

Vibrations in a solid come in discrete packets of energy - phonons
b) E = tw ≈ t 181 cs ← valid for small 181 ← linear approx to dispersion
b) phonons have 3 polarisations: 2 transverse + 1 long Hudinal
b) density of states g(w) = 3 · 2π²C₃
b) minimum wavelength is lattice spacing → max freq cup
c) The Debye model determines wp:
b) equate the num. of single phonon states with the d.o.f (both count the num. of possible excitations)
b) 3N = ∫₀^{wo} g(w) dw = ^{Vwy3}/_{2π²C3} ⇒ cup = cs (6π²)¹¹³ (^N/_V)¹¹³
b) com associate a characteristic energy/temp with wp

- The Debye temperature is $K_BT_p = F_{W_p}$ Is temp at which the highest freq phonon becomes excited Is $T_p \sim hundreds$ of Kelvin (higher for harder materials). • Phonons are not conserved \Rightarrow similar partition func to photons Is $Z_w = (1 - e^{-\beta \hbar w})^{-1}$ (same as photon) Is $\ln Z_{phon} = \int_0^{W_p} dw g(w) \ln Z_w$ (integrate up to W_p , not ∞) Is $(E) = -\frac{2}{p} \ln Z$ $= \frac{3V\hbar}{2\pi^2 G^3} \int_0^{W_p} \frac{w^3}{e^{phw} - 1} dw = \frac{3V}{2\pi^2 (\pi S)^5} (K_B T)^4 \int_0^{T_p/T} \frac{23}{e^{X} - 1} dx$
- For low temp ($T \ll T_D$), $C_V \propto T^3$. This explains the *Bulong-pelit* law, which previous models failed to predict.
- · For high temp (, -> 3NkB as required.
- . In most materials the heat capacity is dominated by phonon modes.

Piatomic gas (QM correction)

- The classical $C_v = \frac{2}{2}NK_B$ only agrees with experiment for high T became d.o.f.s freeze out at lower temp.
- * e.g for rotation, $E = \frac{\hbar^2}{2T} j(j+1)$, j = 0, 1, 2, ... with degen 2j+1 $\Rightarrow 2rot = \sum_{j=0}^{\infty} (2j+1) exp(-\beta\hbar^2 j(j+1)/2I)$ $\Rightarrow when T \gg \frac{\hbar^2}{2Ik_B}$, sum \Rightarrow integral $\therefore 2rot \approx \frac{2I}{\beta\hbar^2}$ $\Rightarrow but for T (c \frac{\hbar^2}{2Ik_B}, 2rot \approx 1)$ so rotational modes are frozen³. • Similar analysis for vibrational modes with $E = \frac{\hbar \omega}{(n+\frac{1}{2})}$.

Bose-Einstein Pistribution

Basons have exchange -symmetric wavefunctions: \(\mathcal{U}, \vec{D}\) = \(\mathcal{U}, \vec{D}\)) = \(\

- Canonical ensemble: sum over sets $\{n_r\}$ sit $\{n_r=N\}$ $Z = \sum_{\{m_r\}} e^{-pn_r E_r} \in difficult$ because of $\{n_r\}$
- Easier to work in grand canonical. For a given state 1r: $Z_r = \sum_{n_r} e^{-\beta n_r (E-\mu)} = (1 - e^{-\beta (E_r - \mu)})^{-1}$ $z_r = \sum_{n_r} e^{-\beta n_r (E-\mu)} = (1 - e^{-\beta (E_r - \mu)})^{-1}$
- Is state occupations are independent of each other:

$$Z_{\text{ground}} = \prod_{r=1}^{l} \frac{1}{1 - e^{-f(E_r - \mu)}}$$

High-temperature boson gas · Consider the z=e ^{fm} <<1 /im/1: $\frac{W}{V} = \frac{1}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \left(\frac{\omega}{dE} - \frac{E^{1/2}}{2e^{-\mu}E^{-1}}\right)^{-1} = \left(\dots\right) \left(\frac{\omega}{dE} - \frac{2e^{-\mu}E^{1/2}}{1-2e^{-\mu}E^{-\mu}E^{-1}}\right)^{-1}$ 45 let $x = \beta E = u^2$ and expand \leftarrow Caussian integrals 5 expansion only consistent if now «1 => 73 << >> 13 this is thus the high temp. expansion Sie al constant N, M must change: $\frac{N}{V} = const \Rightarrow \frac{2}{3} = const$ =7 Z x T -312 · To get the Eas, we need another expression for E: $\underbrace{\underbrace{\mathsf{E}}}_{V} = \underbrace{\underbrace{\mathsf{I}}}_{\{\mathsf{T}\}^{2}} \left(\underbrace{\underbrace{\mathsf{2m}}}_{\mathsf{T}^{2}} \right)^{5/2} \int_{0}^{60} d\mathsf{E} \underbrace{\underbrace{\mathsf{E}}}_{2^{-1}\beta^{\mathsf{F}}} = \underbrace{\underbrace{\mathsf{3mb}}}_{1} \underbrace{\mathsf{x} = \underbrace{\mathsf{BE}}}_{1} = \underbrace{\underbrace{\mathsf{3E}}}_{2 ; \mathsf{T}^{2}\beta^{\mathsf{F}}} \left(\underbrace{\mathsf{I}}_{\mathsf{T}^{\mathsf{T}}} \underbrace{\mathsf{E}}_{\mathsf{T}^{\mathsf{T}}} + \dots \right)$ Ly eliminate small z using inverted (*) $\Rightarrow E = \frac{3}{5} \frac{N}{B} \left(1 - \frac{1}{252} \sqrt[3]{3} + \cdots \right) \left(1 + \frac{1}{45} \sqrt[3]{3} + \cdots \right)$ $\Rightarrow sub \ pV = \frac{2}{3}E \implies pV = Nk_BT \left(1 - \frac{\gamma^3 N}{4 GV} + \cdots \right)$

13 at high temp, classical ideal gas is recovered

Low-temperature limit (Base-Einstein Condemation) · For low temp, $2 \rightarrow 1$. $\cdot \quad \frac{N}{N} = \frac{1}{4\pi} \left(\frac{2^{m} k_{0}^{2}}{\pi^{2}} \right)^{3/2} \left(\int_{a}^{bo} dx \frac{x^{1/2}}{e^{-bx} - 1} \right) \equiv \quad \frac{1}{\lambda^{3}} g_{5/2}(e^{-bx})$ • $g_n(z)$ is a polylogarithm: $g_n(z) = \frac{1}{\Gamma(n)} \int_0^{\omega} dx \frac{x^{n-1}}{z^{-b}x^{-1}}$ 4 as 2 → 0, 93, (2) → 0 4 gn(2) is a monotonically increasing function of z convert integral to (> 9n(1) = 3(n) (Riemann zeta Function) · As TV there will be some T=Tc for which Z=1: $\begin{array}{c} L_{3} \quad sub \quad z=1 \quad : \quad \frac{N}{v} = \left(\begin{array}{c} \frac{m k_{\theta} T c}{2 \pi h^{2}} \right)^{3/2} \quad \overline{\zeta} \left(\frac{s}{2} \right) \end{array}$ b) for T<Tr, it seems that $\frac{N}{V} = \frac{1}{\lambda^3} g_{3/2}(z)$ should decrease since $\exists T$, ie particles disappear. . The mistake was approximating the sum over states as an integral L> Z ~ Jole E"2 gives zero weight to the ground state La as TV, the particles are condensing into the ground state → B-E distr: no = z-1-1, so as z-> 1, no gets large. Including the ground state $\frac{N}{v} = \frac{1}{2^3} g_{3/2}(z) + \frac{1}{2^{-1}-1}$ Law is fixed as $T \rightarrow 0$ Law fixed $T \rightarrow 0$ Law $T \rightarrow 0$ b for Finite N, 2-> 1- 1/W as T->0 b frac of pointicles in the ground state is $\frac{1}{n^{\circ}} \approx (-\sqrt{n})^3 \vec{s}(3_2) = (-\sqrt{T_e})^{3/2}$ is at low T, a macroscopic num of particles may be in the grand state → Base-Einstein Condensate (BEC) $EoS: P = \frac{2}{3}E = \frac{61}{3}g_{5/2}(2)$ 4 for TLTC, 2=1 => p = ket 3(5) ~ T⁵¹² (independent of M)

Ideal Fermi gas · Non-interacting, non relativistic: $E = \frac{\hbar^2 k^2}{2m}$ · Fermions have degeneracy $g_s = 2s + 1$ so the density of states is: $g(E) = \frac{g_s V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} E^{1/2}$ L) $N = \int dE \frac{g(E)}{2^{-}k^{pE} + 1}$, $E = \int dE \frac{Eg(E)}{2^{-}k^{pE} + 1}$ L) $pV = k_{BT} \ln 2 \implies pV = \frac{2}{3}E$ (some as basins) $E^{increase in} pressure$. · High-temp expansion (244.1); $pV = NK_BT(1 + \frac{\lambda^{3W}}{4J_{E}g_{sV}} + \cdots)$

Pegenerate ferming as
As
$$T \rightarrow 0$$
, $\frac{1}{e^{R(E_{T})}+1} \rightarrow \begin{cases} 1, E \leq M \\ 0, E \geq M \end{cases}$ Pegenerate terming
b each fermion goes into the lowest-energy available state until all fermions
have been used up
b the fermi energy E_{F} is the energy of the last filled state.
 $E_{F} \equiv M(T=0) = -\alpha d$ fixed N
b E_{F} in terms of N: $N = \int_{0}^{E_{F}} dE_{g}(E) = \frac{9 \cdot V(2M)}{6\pi^{2}} \int_{0}^{2M} E_{F}^{2M}$
 $\Rightarrow E_{F} = \frac{M^{2}}{2m} \left(\frac{6M^{2}}{3s} \sqrt{1}\right)^{2}$
 E_{F} is the characteristic energy scale; there is an associated characteristic
Fermi temperature $T_{F} = \frac{E_{F}}{K_{B}} \ll T \in T_{F}$ is 'low' temp
formi nomentum K_{F} : $E_{F} = \frac{M^{2}K_{F}^{2}}{2m}$
 \Rightarrow states with $|K| = K_{F}$ are filled \rightarrow Fermi sea
 \Rightarrow states with $|K| = K_{F}$ form the Fermi surface
 $T=0$ EoS: $pV = \frac{2}{3}E = \frac{2}{3}\int_{0}^{E_{F}} dE = E_{2}(E) = \frac{2}{3}NE_{F}$
 \Rightarrow pressure renzero even at $T=0 \rightarrow$ degeneracy pressure

We are interested in E(T). We have $= \frac{91}{4\pi} \left(\frac{2m}{E^2}\right)^{32} \int_{0}^{\infty} dE \frac{E^{5/2}}{2^{-1} e^{R_{+1}}}$ · For N fixed, we must have du trop =0 $\frac{dW}{dT} = \frac{d}{dT} \int_{0}^{\infty} dE \frac{g(E)}{\rho RE-m_{+1}} = \int_{0}^{\infty} dE g(E) \frac{d}{dT} \left(\frac{I}{\rho RE-m_{+1}} \right)$ $L = \frac{d}{dT} [\dots] \text{ only nonzero (approximately) near } E_{F}, \text{ so } g(E) \rightarrow g(E_{F})$ Greplace M by Er since T small $\therefore \frac{dW}{dT} \approx q(E_{F}) \int_{0}^{\infty} dE \left(\frac{E-E_{F}}{k_{g}T^{2}}\right) \frac{1}{4\cosh^{2}(\beta(E-E_{F})/2)} \approx 0$ odd about Even about Er Er · Heat capacity: Cu = $\frac{\partial E}{\partial T}|_{N,N} = \int_{0}^{\infty} dE E_{g}(E) \frac{\partial}{\partial T} \frac{1}{\partial^{B}(E+n)+1}$ 5 Taylor expand Eg(E) = Erg(Er) + 39(Er)(E-Er) > linear because only the fermions within Ket of Fr participate; if each aquies energy KOT, E~g(Ex)KOT·KOT => (~~g(Ex)T · Electrons in metals can be modelled as free Fermi gas L3 heat capacity for a metal: $C_v = \delta T + \propto T^3$ Lo phonons dominate at high T

Lauli paramagnetim · External magnetic fields cause election spins to align: Espin = $M_B \stackrel{B}{=} s$, where $M_B = \frac{le_{1}\pi}{2mc}$ is the bohr magneton and $s=\pm l$ · I and I now have different occupations: $\frac{N}{\sqrt{2}} = \frac{1}{4\pi^2} \left(\frac{2n_1}{\kappa^2}\right)^{3/2} \int_0^{\infty} dE \frac{1}{e^{\beta(E(\frac{1}{2})m_B(B)-m)} - 1}$ • Magnetisation measures how energy changes with B: $M = -\frac{\partial F_{\partial B}}{\partial B}$ $= E_0 + \mu_0 B N_p - \mu_0 B N_1 \implies M = -\mu_B (N_p - N_u)$ \rightarrow Magnetic susceptibility: $\chi = \frac{2m}{28}$ < how easy to magnetize · At high temperatures, $z \rightarrow 0 \Rightarrow \frac{1}{V} \Rightarrow \frac{2}{3} e^{\mp B \mu_0 B}$ $\Rightarrow M \simeq \frac{2M_{B}\sqrt{2}}{\lambda^{3}} \sinh(\beta M_{0}B)$ $L_{\mathcal{F}} N = N_{\mu} + M_{\mu} \simeq \frac{2V_{\mathcal{F}}}{2^{3}} \cosh(\beta \mu_{\theta} \beta) \quad \text{so we can eliminate } 2$ => M ~ MON tamb (BMOB) = same as classical model → susceptibility at zero field: $\chi_{I_{B=0}} = \frac{N_{B_0}}{k_{0}} \sim \frac{1}{4} \in Curie's law$ •At low temperatures, $M \approx \mu_0^2 g(E_c) B$ $\stackrel{\text{L}}{\rightarrow} \text{ susceptibility} \rightarrow \text{ constant}: \quad \chi = M_B^2 g(E_F)$ 5 only states near the Fermi surface can flip spins > materials with X>0 are paramagnetic

Classical Thermodynamics

The Zoroth Law

- · An insulated system is one that is inside adiabatic walls -> iso lated from external influences
- ·A diathermal wall reparates systems in thermal contact
- · Equilibrium is a state in which macroscopic variables are constant.

· Zeroth law: transitivity of equilibrium Aceisc => AceisB

Zeroth law defines a temperature scale: A, (in equilibrium => F_{AC}(PA, VA; PC;VC)=O => V_C = f_{AC}(PA, VA; PC) B, (in equilibrium => V_C = f_{BC}(PB, VB; PC) b) eliminate V_C => f_{AC}(PA, VA; PC) = f_{BC}(PB, VB; PC) (**) b) Zeroth law => A, B in equilibrium => F_{AB}(PA, VA; PB, VB) (t) b) (t) means that we can eliminate pc from (**). This means that OA (PA, VA) = OB (PB, VB) b) O(P, V) is the temperature, T = O(P, V) is the equation of state.

The First Law

• First law: amount of work required to change an isolated system from state 1 -> 2 is independent of how the work is performed

- There is some function of state $E(p, v) \rightarrow energy$, such that $\Delta E = w$
- · A non-isolated system may also gain energy via heat transfer

1st law is conservation of energy: DE = Q + W
A quasi-static process is one for which the sys. is always in equilibrium (though the 1st law can describe violent changes)
b) can write 1st law infinitesimally: DE = dQ + dW
b) E is a func. of state so dE is a total derivative
b) however, Q, W are not functions of state, so dQ, dW only mean that the quantities are small.
For compression, dW = -pdV ∈ work done on system
b) dE = E(p_2, V_2) - E(p_1, V_1) ∈ independent of path

 $L_{\mathcal{F}}(dw = -\int_{v_{i}}^{v_{2}} p dV \in depends on path$

The Second Law

- A reversible process is a quasi-static process that can be run backwards • For a closed loop on a pV diagrown: 4 § dE = 0 since E is a func of state 5 but § pdV \$=0 4 7 st law => § dt @ = \$ pdV 4 i.e reversible cycles can convert heat <> work • Second law (helvin): no process is possible whose sole effect is to convert heat entirely into work. • Second law (Clansing): no process is possible whose sole effect is to transfer heat from a colder to a hother body.
- · 2nd law defines an arrow of time (e.g. clausing => hot heat cold)

Kelvin violator => Clausius violator:
 net Qn-Q=Qc transferred from
 cold to hot

·Clausis violator => Kelvin violator:

Carnot Cycle

·Reversible cycles do not violate kelvin's 2nd law because they deposit heat.

· Carnot cycle:

- () Isothermal expansion at Tri; Qui absorbed from hot res. 2 Adiabatic expansion; TV
- Isothermal compression at Tc; Qc dumped into cold res
 Adiabatic compression; TT

. Work done is
$$W = Q_H - Q_C$$
 with efficiency $\eta = \frac{W}{Q_H} = 1 - \frac{Q_C}{Q_H}$
 $\Rightarrow \eta = 1$ would violate Kelvin's 2nd law

· Carnot's theorem: of all the heat engines operating between two heat reservoirs, a reversible engine has the highest efficiency 1-> prove by coupling another engine to drive a Carnot pump 4) net effect is to extract Qu'-Qu of heat. Clansius => Qn' >> Qn => ME 5 Mc · (orollary: all reversible engines have the same efficiency $\eta(T_n, T_c)$ 13 use a carnot engine to drive the other engine in reverse 4) ME = Mc and Mc = Me = Mc = Me · The carnot cycle defines a thermodynamic temperature scale: 4) let T1 > T2 > T3 and consider 2 Cournot engines operating between Ti, Tz and Tz, Ts respectively $= Q_2 = Q_1(1 - \eta(T_1, T_2)) \quad \text{and} \quad Q_3 = Q_2(1 - \eta(T_2, T_3))$ $\Rightarrow Q_3 = Q_1 (1 - \eta (T_1, T_2)) (1 - \eta (T_2, T_3))$ 5 but can also freat as one engine between T1, T3 \Rightarrow $I - \eta(T_1, T_2) = \frac{f(T_2)}{f(T_1)}$ Swe can choose f(T) = T · This definition of temperature coincides with the ideal gas temp: L) isotherms: $Q_n = \int_a^B \rho dV = \int_a^B \frac{Nk_B T}{V} dV = Nk_B T_n \ln(\frac{V_B}{V_A})$ Qc = -NKOTC In(Vo/Vc) cimilarly L'adiabats: $dQ = 0 \implies dE = CvdT = -pdV \implies TV^{2/3} = const$

$$\Rightarrow V_{A/V_{B}} = \frac{V_{D/V_{C}}}{Q_{H}}$$

$$\Rightarrow \eta = 1 - \frac{Q_{C}}{Q_{H}} = 1 + \frac{T_{C}}{T_{H}} \frac{\ln(V_{D/V_{A}})}{\ln(V_{D/V_{C}})} = 1 - \frac{T_{C}}{T_{H}} = \frac{q_{D}ree_{S}}{r_{H}}$$

$$\Rightarrow v_{A/V_{B}} = 1 - \frac{Q_{C}}{Q_{H}} = 1 + \frac{T_{C}}{T_{H}} \frac{\ln(V_{D/V_{A}})}{\ln(V_{D/V_{C}})} = 1 - \frac{T_{C}}{T_{H}} = \frac{q_{D}ree_{S}}{r_{H}}$$

$$\Rightarrow v_{A/V_{B}} = 1 - \frac{Q_{C}}{Q_{H}} = 1 + \frac{T_{C}}{T_{H}} \frac{\ln(V_{D/V_{A}})}{\ln(V_{D/V_{C}})} = 1 - \frac{T_{C}}{T_{H}} = \frac{q_{D}ree_{S}}{r_{H}}$$

Entropy of reversible processes • For a Carnot cycle, $Q_{1/T_{H}} = Q_{c/T_{c}} \Rightarrow \sum_{i}^{c} \frac{Q_{i}}{T_{i}} = 0$ • A general path can be split into infinitesimal addiabats and isotherms. • for a general reversible process $\oint \frac{dQ}{T} = 0$ • this implies $\frac{dQ}{T}$ is path-independent \Rightarrow function of state • call this entropy (coincides with previous definition) • for an irreversible engine $\frac{Q_{1}}{T_{n}} - \frac{Q_{c}}{T_{c}} = \frac{Q_{1}}{T_{n}} \frac{Q_{c}}{T_{c}} + \frac{(Q_{1} - Q_{1})(\frac{1}{T_{n}} - \frac{1}{T_{c}})}{\sum_{0} \frac{1}{0} \frac{dQ}{T} \frac{dQ}{T}} = 0$ • for a general irreversible path $\oint \frac{dQ}{T} = 0$ (Classius inequality) • for a general irreversible path $\oint \frac{dQ}{T} = \int_{T} \frac{dQ}{T_{i}} - \int_{T} \frac{dQ}{T}$ • for a general irreversible path $\oint \frac{dQ}{T} = \int_{T} \frac{dQ}{T} = \int_{T} \frac{dQ}{T}$

Thermodynamic potentials The state of a system can be specified using 2 of: $P \quad V \quad E \quad T \quad S$ beach has 'natural variables', e.g $dE = 7dS - pdV \Rightarrow E = ECS, V$ is mixed partials give Maxwell relations: $\frac{3^2E}{55V} = (\frac{3T}{35})_S = -(\frac{3P}{35})_V$ Com define different potentials: b Helmholtz: $F = E - TS \Rightarrow olf = -solT - polV$ c Gibbs: $G = E + pV - TS \Rightarrow olf = -solT + Vdp$ c Gibbs: $G = E + pV - TS \Rightarrow olf = -solT + Vdp$ c Mnemonic: Good Physicists rave studied Under Very Fine Teachersc Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c Mnemonic: <u>Good Physicists rave Studied Under Very Fine Teachers</u> c -S U V c -P G T

• It particle number may vary, we must add
$$\mu dN$$

• G is extensive $\Rightarrow G(T, p, \lambda N) = \lambda G(T, p, N)$
 $\Rightarrow G(T, p, N) = \mu(T, p) N \ll \int_{per unit particle}^{N is Gibbs free energy}$

The Third Law Third law: \$\sigma >0 as T >0 and N >∞ L> i.e ground state entropy is not extensive L> provides an absolute reference for entropy Last capacities >0 as T >0 since S(B)-S(A) = \$\int_A^B dT T L> classical ideal gases violate this L> low femperatures need QM Phase Transitions

A phase transition is a discontinuous change in system properties

To solve Minguid = Mgas, vary M(P,T) along an isotherm
b) dµ = (^{2µ}₌)_T dp. G(p,T,N)=p(P,T)N d 6= -SaT+VdP + µdN => (³ⁿ₌)_T = ¹_N (³⁶₌)_TN b) starting at Minguid and integrating, M(P,T) = Minguid + ∫^P_{Pinguid} dp^V (^N_N) b) for Minguid = Mgas, the integral must vanish b) this is the Maxwell construction => areas oF shaded regions must be equal for liquid and gas to coexist

- For a fixed TCTc, there is a unique equilibrium pressure > the set of all these pressures defines the coexistence curve > inside the curve, average density may vary (between the liquid and gas donsities)
 - 1) if we cool a particular system to a point inside the curve, it will undergo phase separation: liquid and gas coexist

- . The coexistence curve encompasses the unstable regions where $(3)_T > 0$ but also metastable regions where $(3)_T < 0$
 - 1> these states (between spinodial and coexistence curves) have higher 6 than the liquid-gas eq, but can be reached (supercooling)

A phase transition is nth order if the nth derivative of a thermodynamic potential is discontinuous (Ehrenfest classification)
 b) liquid-gas is 1st order: (2=), (2=), are discontinuous
 b) as T=Tc, SL=Sy so the discontinuity diminishes (becomes a 2nd order transition)

Plotted in the p-T plane, coexistence curves of many different
 gases coincide -> universality.

Critical exponents

- . We can analyse how quantities vary near the critical point them compare with experiment.
- How does Vg-Vi vary along the coexistence curve as T-Te?
 Law of corresponding states gives T(Vgas, Viiquia)
 Expand in small Vg-Vi to get Vg-Vi ~ (Te-T)^{1/2}

(2) How does the volume change with pressure along the critical isotherm? L) at T=Te, pressure is single-valued 3) befine the compressibility $\mathcal{K} \equiv -\frac{1}{\sqrt{3p}} \frac{3\mathcal{V}}{\mathcal{F}} |_{\mathcal{F}}$. How does \mathcal{K} change as T->Te? → at the critical point $\exists v |_{T_c} = 0 \Rightarrow \exists v |_{T_c v_c} \sim T - T_c$ $\Rightarrow \chi \sim (T-T_c)^{-1}$ b so k diverges as T→Te · Experiments do not support these results, even though we only as sumed analyticity: $\begin{array}{cccc} \textcircled{0} & V_{g} - V_{L} \sim (T - \overline{t_{c}})^{\beta} & \beta \approx 0.32 \\ \fbox{0} & p - p_{c} \sim (V - V_{c})^{\delta} & \delta \approx 4.8 \\ \fbox{0} & \chi \sim (T - \overline{t_{c}})^{-\delta} & \delta \approx 1.2 \end{array}$ critical exponents · These discrepancies arise from fluctuations is grand canonical, $\Re^{N} \sim \frac{1}{2N} \in density fluctuations diminish$ 4) In Zarand = Bp(T,M)V 1) N = 3 3m ln Zgr = V 3p / T, v and AN2 = 1 3 cm / T, v $\Rightarrow \frac{2N^2}{N} = \frac{1}{\sqrt{p}} \frac{\partial \langle N \rangle}{\partial p} \Big|_{T,V}$ $\Rightarrow using the cyclic relation \frac{\Delta N^2}{N} = -\frac{1}{p} \left(\frac{\partial \langle N \rangle}{\partial V} \right)_{P,T} \cdot \frac{1}{\sqrt{p}} \left(\frac{\partial \langle V \rangle}{\partial p} \right)_{N,T}$ > X diverges as T>Te so fluctuations become large.

The sing Model · Ising model: a d-dimensional lattice of N spins with s; = 11 . Two contributions to lattice energy: 1. Interactions of spins with magnetic field 2. Interactions of neighbouring spins $\Rightarrow E = -J \sum_{i,j} S_i S_j - B \sum_{i,j} S_i$ energy of configuration L> <ij> sums over the q=2d nearest neighbors • If J>0, spins prefer to be aligned (forcompnetic) m • Work in canonical ensemble (N fixed) $\Rightarrow Z = \sum_{ssil} e^{-\beta E(s_i)}$ 5 magnetisation is the average spin: $m = \sqrt{\frac{2}{5}} < s_i > = \sqrt{\frac{2}{5}} = \sqrt{\frac{2}{5}}$ · The partition func can be approximated using mean field theory for small fluctuations: $S_{i}S_{i} = [(S_{i}-m)+m][(S_{j}-m)+m] = (S_{i}-m)(S_{j}-m)+m(S_{i}+S_{j}-2m)+m^{2}$ $\Rightarrow neglect \quad (s_i - m)(s_j - m) \Rightarrow E_{mf} = -J \underset{(ij)}{\geq} [m(s_i + s_j) - m^2] - B \underset{i}{\leq} s_i$ Ly there are Ng/2 nearest neighbour pairs ⇒ Emf = 1 JNqm² - (Jqm + B) Zsi is this is now just a 2-state system with Beff = B+ Jam, . With the MF approx, we have $2 = e^{-\frac{1}{2}BJNgm^2} 2^N cash^N B Beff$ Lo can self-consistently solve for m => m = tanh(BB+BJqm)

Critical exponents

(1) How does m vary as
$$T \rightarrow Tc$$
 from below $(B=0)$?
 \Rightarrow Taylor expansion of tanh $\Rightarrow m \approx \beta Jqm - \frac{1}{3} (\beta Jqm)^3 + ...$
 $\Rightarrow m_0 \sim \pm (T_c - T)^{1/2} \Rightarrow$ turns off abruptly when $T=Tc$
 \Rightarrow analogous to $v_q - v_1 \sim (T_c - T)^{1/2}$ for liquid-gas volw
(2) How does m vary with B at $T=Tc$
 $\Rightarrow \beta Jq=1 \Rightarrow m= tanh(\frac{B}{Jq}+m) \approx m+\frac{B}{Jq} - \frac{1}{3}(m+\frac{B}{Jq})^3 + ...$
 $\Rightarrow m \propto B^{1/3}$, analogous to $(v-v_c) - (P-P_c)^{1/3}$ from volw

4 d=3 measured values of critical exponents are the same as for the liquid-gas system.

· For d>4, MFT is very nearly correct.

Landau theory

- Landon theory is a unified way of understand phase transitions (applies to all systems).
 MF approx for king: Z = e^{-1/2} BJqNm² 2^N cosh (BBeff) B F = -1/B ln Z = 1/2 JNqm² - N/B ln [2 cosh (BBeff)]
- A Landon theory considers F(m) without finding the correct' self-consistent value of m.
 Bequilibrium config: ²/₅/_m = 0 ⇒ m= tanh(β Beff) ^{C agrees} with previous rand +

- ⇒ can be shown that this is a 2nd order phase transition Typically $a(T) \approx a_0 (T - T_c)$ and $b(T) = b_0$ $\Rightarrow \frac{2f}{2m} = 0 \Rightarrow m_0 = \int_{-\frac{2}{2}b_0}^{\infty} (T_c - T)^{1/2}$ for $T < T_c$
 - Wy this reproduces the critical exponent of the lsing/volW systems

1st order phase transition

- Now we allow asymmetry in m, e.g B70 Ising model. $F(T;m) = F_0(T) + \alpha(T)m + \alpha(T)m^2 + \mathcal{F}(T)m^3 + b(T)m^4_{+...}$
- 4) as before, assume b(T)>0
- Lo as B changes from the to -ve, & and & change sign
- 13 for low temperatures, a nonzero field results in 2 stable equilibrium

· At high temperatures, the metastable equilibrium disappears at the spinoodial point Landon - Ginzberg theory

Corrects Landon theory by including fluctuations in the order param.
 Landon theory by including fluctuations in the order param.
 Landon becomes m(c)
 <

 $F[m(r)] = \int d^{d}r \ [a(t)m^{2} + b(t)m^{4} + c(t)(\nabla m)^{2} + \cdots]$

Minimise using the calculus of Variations
Is m(r) ⇒ m(r) + 3m(r)
Is SF = Sol⁴ [2a mSm + 46m³Sm + 2c(Vm)·VSm +...]
= Sd⁴ [2am + 46m³ - 2cV²m +...] Sm
Is SF=0 ⇒ cV²m = am r 26m³

> m = const recovers Landau theory

in 1D, Landou-Ginzberg theory describes domain walls.