Kelly Betting

Q: What fraction f^{*} of our bankroll should we allocate to a bet with a probability p of winning $\$ W$ and probability $1-p$ of losing $\$ L$?

After n such bets, our portfolio value V_{n} is given by:

$$
V_{n}=V_{0} \underbrace{(1+f W)^{p n}}_{\text {pn wins }}(\underbrace{(1-f L)^{(1-p) n} \text { losses on average }}_{(1-p) n}
$$

We choose f to maximise the \log return:

$$
\begin{aligned}
& \ln V_{n}=\ln V_{0}+p n \ln (1+f w)+(1-p) n \ln (1-f L) \\
& \frac{\partial \ln V_{n}}{\partial f}=0 \Rightarrow \frac{p n w}{1+f w}+\frac{(1-p) n(-L)}{1-f L}=0 \\
& \therefore \frac{p W}{1+f w}=\frac{(1-p) L}{1-f L} \Rightarrow f w(1-p) L+f L \rho W=p w-(1-p) L \\
& \Rightarrow f^{*}=\frac{p w-(1-p) L}{w L}
\end{aligned}
$$

