A Short Introduction to Boosting

Schapire, R. E., & Freund, Y. (2009). A Short Introduction to Boosting. Society, 14(5), 771–780. https://doi.org/10.1.1.112.5912

Let a training set be denoted by $\{(x_i,y_i)\}^m$, where $x_i \in$ domain/instance space, and $y_i \in $ label set Y

AdaBoost

\[\epsilon_t = \sum_{i:h_t(x_i) \neq y_i} D_t(i)\] \[\alpha_t = \frac 1 2 \ln \left( \frac{1-\epsilon_t}{\epsilon_t} \right)\] \[D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}\] \[H(x) = \text{sign} \left( \sum_{t=1}^T \alpha_t h_t(x)\right)\]

Error of AdaBoost

\[\prod_t [2\sqrt{\epsilon_t (1- \epsilon_t)}] \leq \exp(-2\sum_t \gamma_t^2)\] \[\text{generalisation error} = \hat{P}[H(x) \neq y] + \tilde{O}\left( \sqrt{\frac{Td}{m}}\right)\]

Relationship to SVM

\[\max_{\boldsymbol{\alpha}} \min_i \frac{(\boldsymbol{\alpha} \cdot \mathbf{h}(x_i))y_i}{\Vert \boldsymbol{\alpha} \Vert \Vert \mathbf{h}(x_i) \Vert}\]

Experiments and applications